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Abstract. Training deep neural networks (DNNs) with half-precision
floating-point formats is widely supported on recent hardware and frame-
works. However, current training approaches using half-precision formats
neither obtain the optimal throughput due to the involvement of single-
precision format nor achieve state-of-the-art model accuracy due to lower
numerical digits. In this work, we present a new DNN training engine,
named TrainBF, which leverages a typical half-precision format BFloat16
to maximize training throughput while ensuring sufficient model accu-
racy. TrainBF deploys BFloat16 across the entire training process for best
throughput and improves model accuracy by introducing three proposed
normalization techniques. TrainBF is also lightweight by only applying
these normalization techniques to the layers that are most critical to
model accuracy. Furthermore, TrainBF implements a parallel strategy
that parallelizes the execution of operators in DNN training to make use
of the spare memory space saved by half-precision for better through-
put. Evaluating with six common DNN models and compared with the
state-of-the-art mixed-precision approach, TrainBF achieves competitive
model accuracy with an average throughput speedup of 1.21×, 1.74×,
and 1.16× on NVIDIA A100 GPU, AMD MI100 GPU, and an emerging
AI accelerator SambaNova, respectively.

1 Introduction

Recent advancements in Artificial Intelligence (AI) fueled by the resurgence of
Deep Neural Networks (DNNs) have a spectacular success in widespread fields.
Meanwhile, the increasingly complex DNN models require tremendous overhead
for training. As a result, there has been broad interest in leveraging half-precision
formats to reduce the training time [21]. A lot of DNN training frameworks
support various half-precision formats to offer significant speedups [5,14,22].

Among them, Float16 is a typical half-precision format, which consists of a
sign bit, a 5-bit exponent, and a 10-bit fraction. Compared with the customized
single-precision format TensorFloat-32 (TF32) that is used as the default for-
mat in NVIDIA Ampere architecture, Float16 has the same length of fraction
bits, but shorter exponent bits, causing a narrower dynamic range of the rep-
resentation than that of TF32. Thus, training DNN models with Float16 often
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encounters overflow and underflow problems [15], which could degrade model
accuracy or even lead to non-convergence.

To solve this problem, a training approach called mixed-precision training [14,
18,20,21] is proposed. However, the mixed-precision training with Float16 is far
from achieving the theoretical performance improvement due to the involvement
of single-precision format. Mixed-precision training introduces a master copy of
the weights [21] in single-precision and a component called auto-casting [14] to
avoid overflow problem. Also, a component called loss scaling [21] is presented
to prevent underflow problem. These new components introduce a number of
additional operations and incur considerable overhead. Experiments [16] show
that, compared to TF32 training, mixed-precision training with Float16 brings
an average throughput speedup of 1.34× using 12 common DNN models on an
NVIDIA A100 GPU, which is lower than the theoretical performance speedup
of 2×, because of the above three additional components.

Fortunately, such high overhead can be avoided by using another half-
precision format, Brain Floating Point (BFloat16) [4], since it has the same
length of exponent bits as TF32 and hence keeps the same dynamic range of
representation. As a result, there is no overflow and underflow problems, and it
becomes possible to avoid the involvement of single-precision and format con-
versions. In this paper, we will reintroduce BFloat16 format into DNN training.
The motivation of this work is to achieve higher training throughput by apply-
ing BFloat16 format on all DNN operators. Thus, BFloat16 training, in nature,
stores all the training data and model parameters, and performs all the computa-
tion operators in BFloat16 format entirely. However, current BFloat16 training
cannot work well because of the following three challenges.

Accuracy Challenge. Recent studies [32] have shown that training DNN mod-
els in BFloat16 format alone can result in 17.3%–35.9% accuracy loss compared
to training in single-precision format. The reason for accuracy loss is that, com-
pared to single-precision, BFloat16 has only 7-bit fraction, which makes the
stored data more inaccurate in numerical precision, resulting in the absence of
partial model information. The more essential reason is that BFloat16 optimizes
the overflow and underflow problems at the cost of sacrificing decimal precision,
while the distribution of training data does not occupy the entire dynamic range
of BFloat16, and therefore the exponent bits in BFloat16 is underutilized.

Overhead Concern. Even though there are some methods (will be described
next) that can be applied to DNN layers to improve the bit utilization of
BFloat16, these operations are accompanied by a certain overhead. For example,
if we add such operations to each layer in DNN model to improve the floating-
point bit utilization and amend model accuracy, the training throughput will
be greatly affected and the performance advantage of half-precision will be lost.
Thus, how to apply these operations to layers is another challenge.

Parallel Efficiency. Using BFloat16 format entirely in training will result in
almost half of the memory (47.2% on average) being idle [2]. Traditional methods
of improving memory usage by increasing batch size may lead to a compromise
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in model accuracy and numerical instability due to extra noise and unstable loss
function. Thus, to utilize more memory and bring higher throughput, parallel
execution strategy must be redesigned without changing batch size.

To address these first challenges, we introduce a DNN training engine using
BFloat16 format, named TrainBF; TrainBF is accuracy-aware to training data
by optimizing the offset of sign bit and maximizing the variance of data distribu-
tion; TrainBF is overhead-aware to training throughput by applying normaliza-
tion selectively. TrainBF is parallel-aware to execution efficiency by parallelizing
training operators on multiple execution streams. We also evaluate TrainBF with
six typical DNN models, including three convolutional neural networks (CNNs),
a recurrent neural network (RNN), a graph neural network (GNN), and a sci-
entific model on three AI accelerators. TrainBF consistently outperforms the
state-of-the-art mixed-precision training approach and leads to an average of
1.21× (up to 1.67×), 1.74× (up to 1.83×), and 1.16× (up to 1.18×) speedup
on NVIDIA A100 GPU, AMD MI100 GPU, and an emerging AI accelerator
SambaNova, respectively.

2 Preliminaries

We now establish important preliminaries and discuss work related to ours.

Half-Precision Formats: Half-precision formats have gathered significant
interests in the industry and academia over the past few years [5,14,21,22].

Two formats namely Float16 and BFloat16 are the most popular half-
precision formats and are supported by Google TPUs, NVIDIA GPUs, AMD
Instinct MI GPUs, and the emerging AI accelerators, such as the next-generation
dataflow processor SambaNova. Compared to single-precision format (Float32),
Float16 has a 5-bit exponent and a 10-bit fraction thus resulting in a narrow
dynamic range (from 65504 to 2e−14) due to fewer fraction bits, and BFloat16
retains the same number of exponent bits (8-bit) as Float32 and therefore covers
the same dynamic range but at a lower numerical precision (7-bit fraction).

Both two half-precision formats have higher performance than single-
precision on the existing AI accelerators. For example, Float16 and BFloat16
can provide 16× the theoretical performance of single-precision and 2× the the-
oretical performance of TensorFloat-32 (TF32, which has an 8-bit exponent and
a 10-bit fraction, and it is a new optimized implementation for single-precision
format in NVIDIA Ampere architecture) on NVIDIA A100 GPU. However,
when training with Float16, many studies [16,17] have shown that lots of addi-
tional components are introduced to avoid underflow and overflow problems,
thus resulting in unavoidable overhead. Thus, this paper selects BFloat16 as the
basic half-precision format in DNN training engine to avoid such overhead.

Various Training Data in DNN Training: There are three kinds of train-
ing data involved in DNN training, namely, activations, weights, and gradients.
Concretely, the intermediate result in CNN models, the hidden state in RNN
models, and the activation matrix in GNN models are regarded as activations.
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The weights in CNN models, the weights of the hidden state in RNN models,
and the weight matrix in GNN models are considered as weights. The gradients
of all the weights in DNN models is regarded as gradients. The computation
between the three kinds of training data is the main numerical computation in
DNN training. In addition, the distribution of these training data is not the
same [7], therefore, we will give specific optimization techniques to improve the
bit utilization of each training data in BFloat16.

Fig. 1. Overview of TrainBF.

Essential Reasons for Accuracy Loss with Bfloat16: Besides, as per the
floating-point computation theory, when adding or multiplying numbers with
very different exponents can introduce a significant floating-point error prob-
lem [8,15]. For example, if we add 1.2 ∗ 245 and 3.4 ∗ 2−5 in Float32 will yields
the result of 1.2 ∗ 245, which drops the small one. Such error is even more pro-
nounced when the distribution of these data is completely different and short
fraction of Bfloat16 is used.

More seriously, the floating-point error caused by using low-precision format
in the first few layers of DNN models will propagate to subsequent layers along
with training proceeds, resulting in error amplification problem. The amplified
computation error in the last layer can distort the main numerical information
and greatly affect model accuracy.

Therefore, how to amend the information loss when converting from single-
precision to Bfloat16 format, alleviate the floating-point error in computations,
and avoid the error amplification problem will be the main focus in this paper.

3 Overview of TrainBF

We propose a high-performance DNN training engine using BFloat16 on AI
Accelerators, called TrainBF. Figure 1 outlines its main components. TrainBF
improves the training accuracy of DNN models in BFloat16 format by proposing
three normalization techniques to optimize the data distribution of three kinds
of training data. In addition, TrainBF introduces a lightweight module, adaptive
layer modifier, to apply these normalization techniques with minimal overhead
while ensuring model accuracy. Furthermore, TrainBF parallelizes the execution
of training operators using an efficient parallel strategy on AI accelerators.
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The workflow of TrainBF is divided into offline and online parts. Offline part
starts from selecting the appropriate layers to apply normalization through adap-
tive layer modification (Sect. 5). In each selected layer, the activations is normal-
ized to construct a bits utilization-friendly data distribution (Sect. 4.1). TrainBF
normalizes its weights using the same mean and variance of the normalized
activations (Sect. 4.2). During backward propagation, the training loss is ampli-
fied by a loss scaling factor provided by range-aware loss scaling to construct
scaled gradients (Sect. 4.3). Next, the scaled gradients of weights is descaled and
the weights is updated. In addition, online part analyses the data dependencies
between operators and execute them in parallel with multiple streams under the
management of its runtime component (Sect. 6).

4 Normalization Techniques in TrainBF

In this section, we will introduce three techniques to solve the problems of low
bits utilization and inconsistent data distribution between different training data.

4.1 Central and Range-Maximized Normalization for Activations

As an important training data, activations are involved in all computations in
forward and backward propagation to compute the gradients of previous layer
and the weights. If the bits utilization of activations can be improved and the
data distribution of weights and gradients can be shifted closer to it accord-
ingly, the accuracy of numerical computations can be greatly improved, thereby
amending model accuracy.

Based on our observations and existing work, the data distribution of activa-
tions is random and not centralized. Hence, the decentralized distribution cannot
make full use of the sign bit in BFloat16 format due to unequal numbers of pos-
itive and negative values [1,15]. The most extreme case is when all the data
is positive or negative, the sign bit is meaningless for storage. In addition, the
activations are not evenly distributed across all numerical ranges in BFloat16,
which makes it impossible to make full use of the exponential bits, thus resulting
in very low bits utilization. For example, if all values are distributed from 2k to
2k+1 in an extreme case, then the exponent bits are also meaningless.

Therefore, we propose a central and range-maximized normalization
(CR Norm) for activations, which is used to build a normalized data with zero-
mean distribution and makes its values are evenly distributed in a wider data
range to maximize the number of exponent ranges used by activations. We can
apply CR Norm after activations are generated, or replace the existing batch
normalization layer [13], which is widely applied in almost all DNN models to
ensure that the data is standardized over each mini-batch.

Maximizing the number of exponent ranges used by activations can improve
the utilization of exponent bits, however, the disadvantage of training with such
data is that it will lead to gradient explosion and oversensitive to input problems
due to excessive variance. Therefore, CR Norm designs a learnable parameter
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Rmax and includes Rmax to loss function to trade-off between the maximum
variance of normalized data and model accuracy.

The workflow of CR Norm is shown in Algorithm 1. Algorithm 1 takes the
activations over a mini-batch as input. Algorithm 1 includes two predetermined
parameters φ and η to adjust the weight in loss function and the learning rate
of Rmax, respectively. In Algorithm 1, A represents the values of activations
over a mini-batch, μA and σ2 are the mean and variance of A. ε is the minimal
amount (negligible) introduced to prevent division by zero. O is the output of
CR Norm and its variance is controlled by the learnable parameter Rmax. L is
the original loss function. In forward pass, the memorized statistics, including
mean and variance of activations in m mini-batches is calculated (Line 5 − 6).
Then, the normalization of A has two steps: step 1 standardizes the activations A
to a new distribution Â with zero-mean and unit-variance (Line 7); step 2 scales
Â to a new distribution O with zero-mean and a new variance of the learnable
parameter Rmax (Line 8). In backward pass, Rmax is added to loss function with
a predetermined learning rate φ (Line 10). Then, the gradients are calculated
(Line 11) and Rmax is updated with a predetermined learning rate η (Line 12).

Algorithm 1. Normalization for Activation

1: Input: Values of activation over a mini-batch
( A = A1, A2, ..., Am )

2: Input: Parameter to be learned: Rmax. Pre-
determined parameters: φ in loss function
and η in Rmax update

3: Output: Oi ← CR Norm(Ai)
4: Forward Propagation:
5: μA ← 1

m

∑m
i=1 Ai //memorized mean

6: σ2 ← 1
m

∑m
i=1(A

i − μA)2 //memorized
variance

7: Âi ← Ai−μA√
σ2+ε

//step 1: standardization

8: Oi ← Rmax ∗ Âi //step 2: scaling function
9: Backward Propagation:
10: Loss with range-maximized: L = L−φRmax

11: Compute Gradients: ∂�
∂O , ∂O

∂Rmax
, and

∂�
∂Rmax

12: Update Parameter: Rmax := Rmax −
η ∂�

∂Rmax

4.2 Activation-Aware Normalization for Weights

In the process of forward propagation, a large amount of computation occurs
between the weights and activations. Increasing the numerical similarity between
the two training data can alleviate the floating-point loss of numerical computa-
tion. Therefore, we normalize the weights according to the distribution of activa-
tions of the previous layer. Specifically, we normalize the weights with the same
learnable parameter Rmax. We call this normalization technique activation-aware
normalization. The formula is as follows:

Ŵ ← Rmax ∗ W − μW√
σ2

W + ε
, (1)

where μW and σ2
W are the mean and variance of weights W , ε is the minimal

amount introduced to prevent division by zero, Ŵ is the normalized weights.
Afterwards, the normalized weight will replace the original weights and partici-
pate in all forward and backward propagation.
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4.3 Range-Aware Loss Scaling for Gradients

In backward propagation, the gradients of the previous layer and weights are
computed by the gradients, activations, and weights of the current layer. There-
fore, constructing a normalized gradients that has the same distribution as acti-
vations and weights is also another part to improve the numerical accuracy of
computation. Therefore, this paper proposes a range-aware loss scaling and intro-
duce a loss scaling factor S to adjust the distribution of the gradients to match
the distribution of activations and weights.

Figure 2 illustrates the process of range-aware loss scaling. First, the loss
obtained from forward propagation can be scaled by multiplying by the loss
scaling factor S. Then, the backward propagation deduces based on the scaled
gradients and the scaled weight gradients. Weights are then updated by applying
re-scaling to the scaled weight gradients. In addition, the variance of the scaled
gradients is counted and compared with the learnable variance Rmax to adjust
the loss scaling factor S.

Fig. 2. Evaluation accuracy of four training approaches.

Specifically, the workflow of adjusting loss scaling factor S consists of three
steps: ❶ loss scaling factor S starts from a relatively high value (e.g., S ← 224)
because the gradient is generally small, and then the variance of the gradients
is checked over iterations; ❷ If the variance of the gradients is close to Rmax

within a threshold (e.g., 10% difference), the scaling factor will not be adjusted
and training continues; if the variance of the gradients is much larger than Rmax,
the loss scaling factor S will be halved to reduce the data distribution; Otherwise,
the loss scaling factor S will be doubled to build a wider data distribution; ❸
the adjustment process will go throughout the whole training process because
its overhead is almost negligible due to only a few multiplications are added.

5 Adaptive Layer Modifier in TrainBF

In this section, we discuss the opportunity of applying these normalization tech-
niques to few layers with acceptable overhead and sufficient accuracy.

5.1 Sensitivity Study

We use two data formats, ie, TF32 and BFloat16, and apply the normaliza-
tion techniques to different layers to study its affects on model accuracy and
overhead. We run eight models in Mlperf benchmark [19] on one NVIDIA A100
GPU using two data formats and apply normalization techniques to each layer
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separately. We use the exact same initialization values for both two data for-
mats and treat the output of each layer of using TF32 as the ground-truth
to calculate the computational error of using BFloat16. The computational
error εL of each activations AL in layer L between TF32 and BFloat16 can be
expressed as εL =

∑
(Ai

L TF32−Ai
L BF16)2/

∑
(Ai

L TF32)2, where Ai
L TF32

and Ai
L BF16 represent the activations in TF32 and BFloat16, respectively.

Results reveals that applying normalization to each layer always comes with
overhead but not always bring the same benefit to computational error. For
example, applying normalization to layer 7 in ResNet-50 model has a computa-
tional error of 0.926%, which is much better than not using normalization that
has a computational error of 2.754%. While adding normalization to two more
layers (e.g., layer 1 and 15) leads to a similar computational error of 0.927%. Nev-
ertheless, adding more normalization operations incurs larger overhead. In this
same example, the throughput of using normalization on three layers is 74.86% of
that of using normalization on one layer. Hence, blindly applying normalization
to all the layers in DNN models may result in unacceptable overhead.

We further analyze the collected results of throughput and computational
error in all eight models and summarize some interesting observations.

– Observation 1: Using normalization to too many layers largely reduces the
throughput of model training.

– Observation 2: Using normalization for each layer does not have the same
effect on reducing computational error. It strongly depends on where does
the normalization occur in the model.

– Observation 3: Inappropriate use of too many normalization operations may
not be necessary. Applying a small number of normalization operations can
also achieve the optimal throughput while meeting the accuracy requirement
of numerical computation.

– Observation 4: Computational error gradually propagates backwards. There
is no point in correcting error at the very beginning or at the end of the model.

5.2 Adaptive Layer Modifier

Driven by these observations, we introduce a lightweight and adaptive layer
modifier to apply normalization and maximize training throughput. Algorithm 2
depicts its workflow. Layer modifier first avoids applying normalization to the
first f and last l layers because of Observations 1 and 4 (Line 6), where f and l
are predefined values and are typically 5% of the number of layers. Then, layer
modifier collects activations of each layer using TF32/Float32 and BFloat16
formats to calculate the computational error between them (Line 8–12). Layer
modifier chooses the layer with the largest computational error and applies nor-
malization to it (Line 13–15). Next, the computational error of the last layer
between in two formats is tested (Line 16), and new normalization operations
continue to be added until the computational error is less than a threshold (Line
17–18). The algorithm happens only once before training, therefore, its overhead
has a negligible impact on end-to-end training time.
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Algorithm 2. Lightweight and Adaptive Layer Modifier

1: Input: DNN model with N layers ( L1, L2,
... ,LN )

2: Input: A batch of testing dataset B, first lay-
ers f , last layers l

3: Output: A set of layers S that need to be
normalized

4: All layers in DNN model M ← {1, 2, ..., N},
5: An empty set of errors E ← {}, An empty

set of layers S ← {}
6: Remove the first f and last l layers from set

M
7: while true do
8: for i ∈ set M do
9: Obtain activations AF P32

i of layer Li

using data B with TF32 format

10: Obtain activations ABF16
i of layer Li

using data B with BFloat16 format
11: Compute the computational error Ei

between AF P32
i and ABF16

i
12: Keep the computational error of each

layer E ← E + Ei

13: Choose the one with the greatest error in
set E with the index of o

14: Remove o from set M and add o to set S
15: Apply normalization techniques to layer o
16: Compute the final error Final E between

TF32 and BFloat16 format using data B
17: if Final E < threshold then
18: Return a set of layers S

6 Efficient Parallel Strategy in TrainBF

TrainBF is also a work aiming at efficiently training DNN models on AI accel-
erators that have high parallelism and large memory. We propose an efficient
parallel strategy to train DNN models using multiple execution streams. In addi-
tion, this strategy maintains the same batch size as single precision training to
avoid the non-convergence and gradient explosion problem.

Fig. 3. Evaluation accuracy of four training approaches.

We propose an efficient parallel strategy to maximize memory usage, it is
divided into two parts: the first one is an operator-to-stream mapping algorithm,
where the input is the compiled computational graph of the model (such as
TorchScript graph in PyTorch), and the output is the mapping between operators
and execution streams; The second one is a runtime algorithm that collects the
execution time of each operator and controls memory allocation of each stream.

Figure 3 describes the execution flow of the operator-to-stream mapping algo-
rithm. At step ❶, we first eliminate the unnecessary edges with the minimum
equivalent graph to avoid repeated and progressive data dependencies. For exam-
ple, there are data dependencies from V1 to V2 and V2 to V5, so the data depen-
dencies from V1 to V5 are repeated and can be removed. In addition, we collect
the execution time of each operator in the previous iteration and use them as
the weight of edges. Specifically, the weight of each edge is equal to the execu-
tion time of the outgoing node, because the incoming node must wait for all the
incoming edges to complete before starting. At step ❷, the weight of each edge is
accumulated with the weights of all the edges in the max-flow augmentation path
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to obtain the weight accumulation graph, which represents the minimum exe-
cution time for fully parallel execution. At steps ❸ and ❹, a weighted bipartite
graph is constructed based on the weight accumulation graph, and its maximum
matching is calculated by a typical graph algorithm, namely Kuhn-Munkres
algorithm [33]. Then the grouping strategy minimizes the sum of weighted data
dependence between groups, thereby minimizing the sum of the waiting time of
each group. At step ❺, synchronization points are added to each edge between
each group to ensure the correctness of the execution order, and each group is
assigned to a different execution stream.

After getting the operator-to-stream mapping, we start all execution streams
simultaneously at the beginning of training to maximize parallelism. However,
each operation performed in a different execution stream consumes a certain
amount of independent memory resources, and executing multiple memory-
consuming operators in different streams simultaneously could lead to Out-of-
Memory(OOM) issue. Therefore, we enable a memory table to check whether the
memory overflows before each operator is launched. In addition, the execution
time of each operator is recorded and passed to the operator-to-stream mapping
algorithm to update the weight of the computational graph.

7 Evaluation

7.1 Experimental Setup

Platforms and Formats: We evaluate TrainBF on three architectures, as
shown in Table 1. Two of them are GPU-based platforms equipped with NVIDIA
A100 GPU (A100 in short) and AMD MI100 GPU (MI100 in short), respectively.
The third is an AI accelerator-based platform, SambaNova SN10-8 (SambaNova
in short). A100 and MI100 GPUs support Float32, Float16, and BFloat16 for-
mats. A100 GPU also supports TF32 [3]. SambaNova supports Float32 and
BFloat16 formats.

Table 1. Evaluated hardware

NVIDIA GPU AMD GPU AI accelerator

Core Tesla A100 40 GB
56 SMs @1328 MHz

AMD Instinct MI100
120 Compute Units
@1502 MHz

SambaNova SN10-8
640 PCUs
640 PMUs

Caches L2: 40 MB L2: 8 MB On-chip: 300MB

Memory 40 GB HBM2 32 GB HBM2 12TB DDR4

Bandwidth 1555 GB/s 1200 GB/s 150TB/s

Table 2. DNN models, datasets, and con-
figurations

DNN Model Field Dataset Epoch Throughput Unit

Resnet50 Image Recognition ILSVRC2012 90 Images per second

VGG19 Image Recognition ILSVRC2012 100 Images per second

U-Net Image Segmentation Brain MRI Kaggle3m 30 Images per second

Social-LSTM Trajectory Prediction Trajnet++ 100 Sequences per second

GCN Graph Computation Cora Dataset 200 Items per second

UNO HPC model CCLE Dataset 50 Items per second

Dataset and Models: We use six DNN models with a public dataset that
cover a wide range of CNN, RNN, GNN, and scientific models. The details of
the models are summarized in Table 2. Epoch represents the number of epochs
trained before obtaining the final model accuracy, Throughput Unit is the unit
of throughput of each model during training. We use different batch sizes on
different platforms to fill all available memory to maximize memory utilization.
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Implementation and Baselines: This work is implemented based on PyTorch
1.11.0. We implement the three customized normalization techniques as three
new modules in PyTorch. The statistics of modification of TrainBF given by git
diff are 24 files changed, 1535 insertions (+), and 349 deletions (−).

We compare TrainBF with three solutions:
❶ A single-precision solution: pure Float32 or TF-32 training.
❷ A mixed-precision solution: Automatic Mixed Precision (AMP) with
Float16 [23].
❸ A half-precision solution: pure BFloat16 training.

For a fair comparison, we compare TrainBF with AMP using Float16 on
A100 since it provides the same theoretical performance for both Float16 and
BFloat16. For MI100 and SambaNova, neither platform supports the same per-
formance for Float16 and BFloat16, thus we compare the throughput and accu-
racy of TrainBF with the throughput of Float32 training and the accuracy of
BFloat16 training, respectively. In addition, all six models are tested on A100
and MI100. For SambaNova, only two models (U-Net and UNO) are tested,
because the support for LSTM and some kernels will not be released until Q4
2023.

7.2 Throughput and Accuracy

Figure 4 shows throughput and accuracy on all platforms. We run all models on
A100 and MI100 and two models on SambaNova due to its limited support.

Figure 4 shows that TrainBF performs much better than the state-of-the-art
training approaches. Specifically, for A100, TrainBF introduces 1.74×, 1.52×,
1.61×, 1.31×, 1.46×, 1.08× throughput improvement on six DNN models respec-
tively, compared to TF32 training, with only 0.48% accuracy degradation on
average, which is far below the accuracy loss of 1.5% that users can tolerate
for training [25]. TrainBF also introduces 1.31×, 1.15×, 1.09×, 1.13×, 1.37×,
1.67× throughput improvement, compared to AMP with Float16, with almost
the same accuracy. TrainBF improves the final accuracy by 15.7% on average
and up to 45.8% on UNO model, compared to BFloat16 training.

Fig. 4. Throughput and accuracy using four training methods on six models with three
different hardware platforms.

For MI100, TrainBF introduces 1.63×, 1.40×, 1.83×, 1.42×, 1.53×, 1.04×
throughput improvement on six DNN models respectively, compared to Float32
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training, with only 0.52% accuracy loss on average. TrainBF improves the finial
accuracy by 13.9% on average, compared to BFloat16 training.

For SambaNova platform, TrainBF introduces 1.15× and 1.18× throughput
improvement on U-Net, UNO models, compared to Float32 training, with the
accuracy loss of 0.32% on average. TrainBF improves the final accuracy by 3.59%
on average, compared to BFloat16 training.

We have the following three observations: (1) TrainBF brings larger benefits
to CNN models, because matrix multiplication as the main computation in CNN
models can take full advantage of the high performance of BFloat16 format. (2)
For RNN and GNN models, MI100 has higher speedup than A100, because these
models are memory intensive. The amount of data accessed is greatly reduced
by using BFloat16, which eliminates the bottleneck of lower memory bandwidth
on MI100 compared to A100. (3) For SambaNova, TrainBF achieves almost the
same throughput as BFloat16 training while maintaining the Float32 accuracy.

7.3 Breakdown for Accuracy Improvement

To quantify the contribution of three normalization techniques to accu-
racy improvement, i.e., (a) central and range-maximized normalization, (b)
activation-aware normalization, and (c) range-aware loss scaling, we apply the
three techniques one after another. The results in Fig. 5 are normalized by using
the accuracy of applying all of the three techniques.

We have three observations. (1) The central and range-maximized normaliza-
tion is very effective and accounts for 48.3% on average in improving model accu-
racy across all models, because this normalization is the cornerstone of reduc-
ing computational error, thus enabling more opportunities for all subsequent
techniques. (2) The activation-aware normalization is very effective (52.7% on
average) for the RNN model (e.g., social-LSTM) because a large number of
small matrix multiplication are computed in RNN training, and the normalized
weight could prevent the error of small matrix from propagating to the follow-
ing computations, thereby avoiding greater accuracy loss. (3) The range-aware
loss scaling contributes 33.1% on average to GNN and scientific models (e.g.,
GCN and UNO), because the loss in these models varies greatly, making the
distribution range of gradients very unstable without scaling.

Fig. 5. Quantifying the contributions of three normalization to accuracy improvement.
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Fig. 6. Number of exponent ranges used and bits utilization on three platforms.

7.4 Effectiveness of Three Modules in TrainBF

Quantifying Bits Utilization. We use number of exponent ranges used to
quantify the bits utilization. Results are shown in Fig. 6. With TrainBF, the
average number of exponent ranges used on all models is improved from 41.4
to 57.6 on A100, 40.7 to 51.3 on MI100, and 49.7 to 57.6 on SambaNova. With
TrainBF, the average bits utilization on all models is 92.7% on A100, 88.4% on
MI100, and 91.5% on SambaNova. The bits utilization of BFloat16 in TrainBF
is very close to the bits utilization of TF32/Float32 in single precision training
and even exceeds by 1.7% and 3.5% on average on A100 and MI100 for GCN
and UNO models. Based on the improvement of bits utilization, there is a large
increase in computational accuracy, further improving model accuracy.

Quantifying Learnable Parameter Rmax. TrainBF uses the learnable param-
eter Rmax to controls the variance of normalized output. In our experiments,
Rmax is initialized to 1 and reaches 2.5 in the first 25% of the training process
for most models, which implies that the primary (95%) data range of activations
and weights are 1.45 times larger than the initial data range. Among the eight
DNN models we evaluate, Rmax is stable for all three CNN models and three
scientific models in the last 75% of the training process, while Rmax changes
more drastically in the other two models, namely social-LSTM and GCN. The
main reason is that the data distribution of gradients on social-LSTM and GCN
differ greatly over epochs in model training, so Rmax is constantly tuned to find
the optimal value that matches the distribution of activations.

Quantifying Efficient Parallel Strategy. TrainBF leverages the memory
space saved by half-precision format to parallelize the execution of training oper-
ators and increase memory usage. Compared with TrainBF without an efficient
parallel strategy, TrainBF brings 1.13× and 1.29× performance improvement on
A100 and MI100, because the execution strategy of closed-source SambaNova
cannot be modified. Compared with the naive implementation of BFloat16 train-
ing, our efficient parallel strategy recognizes independent operators and executes
them simultaneously, and results show that the memory usage is 65.32% and
74.17% higher than naive implementation on A100 and MI100, respectively.
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7.5 Overhead Analysis

We explore the overhead of TrainBF by comparing the throughput of
TrainBF without the efficient parallel strategy and that of BFloat16 training
in Fig. 4. The throughput of BFloat16 training represents the optimal train-
ing performance regardless of model accuracy in single-stream execution. After
applying these normalization techniques to selected layers, the calculation of
throughput will include all of the runtime overhead. Compared with the through-
put of BFloat16 training, TrainBF introduces an average throughput degrada-
tion of 3.38%, 7.91%, and 9.67% on A100, MI100, and SambaNova, respectively.
Obviously, A100 and MI100 have lower overhead, because the normalization
operations can be merged by fusion optimization in GPU implementation.

8 Related Work

Reduced Precision Training: Using reduced precision for DNN training has
been an active topic of research [6,9–12,28,34]. Seide et al. [24] were able to
reduce the precision of gradients to one bit using Stochastic Gradient Descent.
However, these works mainly focus on a small number of models and lack gen-
erality to apply to a wider range of DNN models.

Mixed Precision Training: Mixed precision training demonstrates a broad
variety of DNN applications involving deep networks and larger datasets with
minimal loss compared to baseline FP32 results. Micikevicius et al. [21] showed
that Float16/Float32 mixed precision with autocasting and loss scaling can
achieve near-SOTA accuracy. The only concern is about performance improve-
ment by using Float16. TrainBF leverages BFloat16 format to avoid such over-
head and maintain SOTA accuracy.

Normalization: Normalization techniques are essential for improving the gener-
alization of DNN models [29–31]. Dmitry et al. [26] constructed instance normal-
ization to prevent instance-specific mean and covariance shifts. Yuxin et al. [27]
proposed group normalization to normalize features within each group. None of
these are designed to eliminate computational error, which is the main goal of
this paper.

9 Conclusion

BFloat16, as a typical half-precision format, has been neglected in recent AI
accelerators. This paper designs a new training approach, which includes three
normalization techniques, an adaptive layer modifier, and an efficient parallel
strategy to avoid accuracy loss and improve hardware utilization. Results show
that our approach yields better throughput than the state-of-the-art training
approaches. We expect more data formats can be inspired by our approach.
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