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Abstract—Scientific applications are increasingly adopting Ar-
tificial Intelligence (AI) techniques to advance science. High-
performance computing centers are evaluating emerging novel
hardware accelerators to efficiently run AI-driven science appli-
cations. With a wide diversity in the hardware architectures and
software stacks of these systems, it is challenging to understand
how these accelerators perform. The state-of-the-art in the evalu-
ation of deep learning workloads primarily focuses on CPUs and
GPUs. In this paper, we present an overview of dataflow-based
novel AI accelerators from SambaNova, Cerebras, Graphcore,
and Groq. We present a first-of-a-kind evaluation of these
accelerators with diverse workloads, such as Deep Learning (DL)
primitives, benchmark models, and scientific machine learning
applications. We also evaluate the performance of collective
communication, which is key for distributed DL implementation,
along with a study of scaling efficiency. We then discuss key
insights, challenges, and opportunities in integrating these novel
AI accelerators in supercomputing systems.

Index Terms—Scientific Machine Learning, Deep Learning,
Accelerators, Performance Evaluation, Benchmarking

I. INTRODUCTION

Artificial Intelligence (AI) is emerging as a crucial compo-
nent in several science domains, such as biology, high energy
physics, and clean energy, to accelerate new scientific discov-
eries from data obtained from experiments and/or simulations.
An AI-driven science application involves either a science
experiment at an experimental facility or simulations carried
out on supercomputers, coupled with a learning component
that uses AI models to steer simulations, replace them either
in part or entirely with surrogate models, solve a scientific
problem as an AI for science workload, or a combination of

the above. There will be a surge in scientific applications
that require infrastructure to enable in-place data analysis
at experimental facilities and AI capabilities integrated with
large-scale models. The US Department of Energy (DOE) AI
for Science Report [1], put forth by stakeholders from DOE
labs, academia, and industry, cohesively highlights the need for
tighter integration of the AI infrastructure ecosystem with ex-
perimental and leadership computing facilities. There is great
emphasis on efficiently implementing Deep Learning (DL)
models and exploiting novel architectures, especially reduced-
precision AI accelerators. The DOE Advanced Scientific Com-
puting Research (ASCR) report on extreme heterogeneity [2]
lists challenges in integrating a broad spectrum of diverse
hardware resources for science.

Recent advances in hardware, including heterogeneous sys-
tems and AI accelerators, will help researchers to advance
the state of the art in scientific applications on powerful
exascale supercomputers such as Aurora [3], El Capitan [4],
and Frontier [5]. At the same time, we are witnessing the emer-
gence of specialized AI accelerators, such as from Cerebras
[6], SambaNova [7], Groq [8], and Graphcore [9], promising
orders-of-magnitude improvement for various AI workloads
and are being deployed at various HPC facilities such as
AI Testbed at ALCF [10]. There have been increasing use
cases in successfully porting and evaluating scientific Machine
Learning (ML) applications on these accelerators [11]–[20]. AI
accelerators are also expanding their capabilities to cater to a
broader range of applications. For example, Cerebras created a
software development kit to run computational fluid dynamics
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applications with no AI models on the CS-2 system [21].
Graphcore Intelligence Processing Unit (IPU) systems have
been explored to run stencil computations on structured grid
problems [17]. The trend of enhancing their capabilities to ac-
celerate traditional high-performance computing applications
will continue to evolve rapidly. AI accelerators have already
proven to have a tremendous impact on various scientific
applications.

With the growing importance of AI accelerators in HPC
facilities, it is critical to understand how these systems perform
for different DL tasks. However, only a limited amount of
work exists on evaluating these accelerators, predominantly
with GPUs. There is no existing work on a comprehensive
evaluation of various accelerators. In this paper, we perform
a comprehensive evaluation of several AI accelerators with
a mix of workloads, including core DL kernels, benchmark
models, as well as scientific applications. To the best of our
knowledge, this work is the first of its kind in evaluating
modern AI accelerators across diverse workloads.

The contributions of this paper include the following:
• We present a detailed comparative overview of the hard-

ware and software characteristics of modern AI acceler-
ators.

• We present a first-of-a-kind methodology and evaluation
of the performance of the accelerators with a diverse set
of important DL workloads.

• We explain the implementation challenges and optimiza-
tions.

• We provide insights from this timely and critical experi-
mental analysis.

The remainder of the paper is organized as follows: Section
II discusses the background on AI accelerators and bench-
marking tools and practices for both ML and traditional
HPC applications. Section III presents a detailed overview of
various AI accelerators involved in this study. Next, Section
IV describes the workloads used in this study and their
evaluations. We present the results in Section V followed by
our key insights from these experiments in Section VI, and
conclude in Section VII.

II. BACKGROUND

GPUs have played an important role in ending the AI winter
as well as keeping up with the increased compute demand
of state-of-the-art ML models. Computer architects are mov-
ing towards the design of domain-specific architectures and
dataflow-based spatial accelerators [22], [23], which makes use
of optimizations such as data reuse and efficient mapping to
underlying spatial architecture. Performance comparison and
evaluation of DL models are discussed in [24]–[26], but they
are limited to CPUs, GPUs, and TPUs. Though the emerging
AI accelerators build upon core dataflow principles, they vary
in how they leverage them to accelerate various aspects of ML,
making certain architectures more suitable than others for a
particular type of workload. Hence, the task of characterizing
the performance of the accelerators for various workloads is
essential and timely.

It is crucial to benchmark systems to help understand the
intricacies in the performance of scientific machine learn-
ing applications. There is an urgent need to understand
fair and effective benchmarking of ML applications that are
representative of real-world scientific use cases, unlike the
TOP500 list [27] that ranks supercomputers worldwide and
publishes their performance numbers (in FLOPS) with High-
Performance Linpack (HPL). Several benchmarking efforts
have previously aimed to characterize the performance of
ML workloads, including Deep500 [28], HPCAI500 [29],
and HPL-AI [30]. Other efforts aimed at analyzing model
performance include DAWNBench [31], DeepBench [32],
Fathom [33], ParaDNN [34], HPE DLBS [35], XSP [36],
and Mahon [37], but they primarily aim at CPU and GPU-
based systems. MLPerfTM [38] is a community-driven stan-
dard to benchmark ML workloads, focusing on end-to-end
performance metrics. MLPerf HPC [39] is a benchmark suite
of large-scale scientific ML training applications, CosmoFlow
[40], DeepCAM [41] and OpenCatalyst [42], driven by the
MLCommonsTM Association.

It is vital to gain a deeper understanding of the perfor-
mance characteristics of the low-level fundamental kernels
underlying ML algorithms, which are responsible for the most
computation time and energy requirements. Studying the most
efficient mapping of these kernels for the novel dataflow-based
spatial accelerators is an essential first step. For this purpose,
a mapping study of fundamental kernels such as GEMMs,
convolutions (Conv2D, Conv3D), fully connected (FC) layers,
and activations (e.g., ReLU), in the context of architectural
features of dataflow-based spatial accelerators, is needed.
Until now, there have been studies on general matrix-matrix
multiplications (GEMM) primarily on GPU-based systems
[43]–[50]; however, there is a lack of comprehensive studies
on a variety of dataflow-based accelerators. Additionally, the
work in [51] evaluates spatial accelerator architectures for
matrix-matrix multiplications. It proposes an analytical cost
model to optimize runtime and energy for GEMM routines
to generate dataflow mappings. Techniques to map dataflows
to spatial accelerators [52] have been studied in a limited
scope for traditional ML workloads using methods such as
genetic algorithms [53] and reinforcement learning [54]. Other
efforts [55]–[61] have proposed ways to scale DL models by
partitioning across available hardware by model or tensor-
parallelism, but are limited to GPUs and TPUs [62].

III. OVERVIEW OF EVALUATED AI ACCELERATORS

We compare five AI accelerators as part of this work.
Below we describe the details of a node for each evaluated
accelerator. Table I provides an overview of various features
of a single unit of a node for these systems and compares their
hardware characteristics and software stack.

1) NVIDIA® A100 GPU: The NVIDIA DGX A100 has
eight NVIDIA A100 Tensor Core GPUs interconnected with
NVLink® & NVSwitch® technology. Each A100 GPU features
19.5 TFLOPS of FP32 and 312 TFLOPS of FP16/BF16 per-
formance, 40 GB of HBM memory, and 1.6 TB/s of memory
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TABLE I: Features of evaluated AI accelerators

Feature Nvidia A100 SambaNova Cardinal
SN10

Cerebras CS-2 Graphcore GC200
IPU

Groq GroqCard

Compute Units 6912 Cuda Cores, 432
Tensor Cores

640 PCUs 850,000 Cores 1472 Compute cores Single large core with
409,600 MACCs

On-Chip
Memory

192 KB L1 40 MB L2 > 300 MB 40 GB 900 MB 230 MB per GroqChip

DRAM 40 GB HBM2 & 1.7
TB DRAM

12 TB DDR4 off-chip
memory

N/A 1 TB streaming mem-
ory

1TB DDR4

Process 7nm 7nm 7nm 7nm 14nm
Software Stack
Support

TensorFlow, PyTorch,
ONNX, MxNET,
CUDA

SambaFlowTM, PyTorch,
TensorFlow

TensorFlow, PyTorch,
Cerebras SDK

TensorFlow, PyTorch,
ONNX, PopArt

TensorFlow, PyTorch,
ONNX

Precision support TF32, FP32, FP16,
BF16

FP32, BF16, Int32, Int16,
Int8

FP32, FP16, cbfloat FP32, FP16 FP32, FP16, Int8

Interconnect NVLink Infiniband-based Ethernet-based IPU Link RealScaleTM

bandwidth. The DGX A100 has full connectivity between all
eight GPUs, and the communication bandwidth between any
two GPUs is up to 300 GB/s (600 GB/s bidirectional). We use
A100 as the baseline for comparison with other accelerators.

NVIDIA A100 supports the common DL stack, including
TensorFlow, PyTorch, and MxNet. A100 also provides a vari-
ety of libraries, such as cuDNN, cuBLAS, cuFFT, cuSPARSE,
and NVIDIA Collective Communication Library (NCCL)®,
which are based on the Compute Unified Device Architecture
(CUDA) platform and optimized to provide state-of-the-art
performance in computations and communication on GPUs.

2) SambaNova DataScale® SN10-8R System: We use a
SambaNova DataScale SN10-8R rack system which con-
sists of two DataScale SN10-8 nodes interconnected with
an InfiniBand-based fabric. Each SN10-8 node has a host
module (1.5TB and 128 cores) and eight SambaNova Systems
Cardinal SN10TM Reconfigurable Dataflow UnitsTM (RDUs).
Each SN10 RDU chip contains 640 Pattern Memory Units
(PMUs) and 640 Pattern Compute Units (PCUs), and a total
of 320 MB of on-chip memory among all PMUs with 150 TB/s
on-chip memory bandwidth. With BF16, the peak performance
of one Cardinal SN10 RDU chip is above 300 TFLOPS. SN10
RDU chips on a system are interconnected via the RDU-
ConnectTM to enable both model and data parallelism, where
each link is 64 GB/s.

The SambaNova system features SambaFlowTM, a complete
software stack designed to advance developer productivity
and is also fully integrated with standard frameworks, such
as TensorFlow and PyTorch. SambaFlow enables the user to
extract, compile, optimize, assemble, and execute the optimal
dataflow graph of any model on this system.

3) Cerebras CS-2 system: At the heart of the Cerebras CS-2
system is the second-generation Wafer-Scale Engine (WSE-2),
a massive parallel processor built from a single 300mm wafer.
It offers 850,000 cores designed for sparse linear algebra, with
peak performance of 75 PFLOPS with sparse FP16 and 7.5
PFLOPS with dense FP16, with 40 GB of onboard SRAM
distributed across the WSE, ensuring that each core can access
its local memory in a single clock cycle. The CS-2 system is

a network-attached system 1. Instead of connecting through
a PCIe or similar protocol, the CS-2 system can act as a
complete, independent compute node. This unusual capability
enables system-level heterogeneity.

The Cerebras Software Platform supports popular machine
learning frameworks, TensorFlow and PyTorch. The Cerebras
SDK allows programmers to write lower-level code that targets
the WSE’s microarchitecture directly using a domain-specific
programming language called the Cerebras Software Language
(CSL). The sheer scale of the WSE enables models of very
large size and makes it easier for one to program these
models without having to reason with distributed memory
programming. For models up to a billion parameters, the entire
network can be held on-chip at once, with network layers
mapped directly to regions of cores. Models of more than a
billion parameters are executed using a “weight-streaming”
mode, where activations are held on-chip and weights are
streamed one layer at a time.

4) Graphcore IPU-M2000: The Graphcore IPU-M2000 is
powered by four GC200 IPU (Intelligence Processing Unit)
processors and delivers 1 PFLOPS of FP16 performance, with
3.6 GB on-chip memory and up to 256 GB of Streaming
Memory. Each GC200 IPU has 1,472 processor cores, running
8832 independent parallel program threads with 250 TFLOPS
of FP16 performance. Each GC200 IPU holds 918 MB on-
chip memory with a bandwidth of 47.5 TB/s. The IPU gateway
manages communication between IPUs via the IPU-Links with
320 GB/s communication bandwidth over 64 IPUs or 16 IPU-
M2000s (Pod64). Scaling over multiple Pod64 machines is
achieved by dual-port 100 Gb/s Ethernet NIC provides IPU
over Fabric (IPUoF) connectivity.

Graphcore’s Poplar SDK handles the compilation of an ML
framework-level code, optimal data distribution over IPUs’
memory, and execution of parallel threads on multiple IPU
processors using the Bulk Synchronous Parallel (BSP) scheme.
It uniquely uses phased execution, which exploits the fine-
grained, MIMD nature of the IPU by ensuring there are no race
conditions, livelocks, or deadlocks during parallel execution

1The Cerebras Wafer-Scale cluster that integrates multiple CS-2 systems
in data parallel flow was not available at the time of evaluation
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across the 1,472 processor cores and their tightly coupled
memory, by compiling the timing of the compute, sync, and
exchange phases into an executable graph. This makes the
IPU well suited for common ML workloads and irregular
workloads. Standard ML frameworks including TensorFlow,
PyTorch, ONNX, and PaddlePaddle are fully supported along
with access to PopLibs through Poplar C++ API.

5) GroqNode: The GroqNode server GN1-B8C consists
of eight GroqCard accelerators. The Groq architecture was
designed to deliver orders of magnitude lower latency versus
legacy architectures. Key contributing features for doing so
are the monolithic, single-core engine combined with spatial
streaming dataflow. Groq uses its tensor streaming processor
(TSP) architecture to enable it to store more models within
memory and process data with high performance, which makes
it ideal for making inferences from large datasets. Each Gro-
qCard packages a single GroqChip processor into a standard
PCIe Gen4 x16 and features 188 TFLOPS of FP16 and 750
TOPS of INT8 performance, 230 MB of on-chip memory, and
80 TB/s of on-chip memory bandwidth. The eight GroqCards
are directly connected via the RealScale chip-to-chip network
to enable near-linear multi-card, multi-server, and multi-rack
scalability with no need for external switches.

The GroqWare software stack has two primary design entry
points, either as PyTorch or TensorFlow programs or as
a custom application on top of a bare-metal programming
interface. Groq Compiler is used to deploy state-of-the-art
deep learning Models that are trained in PyTorch, TensorFlow,
and ONNX. Granular-level programming on GroqChip can be
made by the Groq API. The GroqViewTM profiler helps in
improving the developer workflow.

IV. EVALUATED WORKLOADS

To evaluate the accelerators for a diverse set of AI models,
we consider the workloads shown in Table IV. This includes
(i) four fine-grained and key DL primitives, namely, GEMM,
Conv2D, RNN, and ReLU, (ii) three standard benchmarks
derived from MLPerf [38], U-Net, BERT-Large, and ResNet-
50, (iii) two AI-driven scientific machine learning applications,
X-ray Bragg diffraction peak detection (BraggNN [63]) and
drug discovery for precision medicine (Uno [64]), and (iv)
scaling benchmarks for collective communications and data-
parallel training. Section IV provides additional details for this
choice and associated metrics.

We chose this set of workloads because they are commonly
used in the DL community, and all the evaluated systems
support them. Other models exist that demonstrate the true
potential of some of these systems. Still, evaluating such
models is not the focus of this work as we aim to understand
the performance across all the evaluated systems and not in
isolation. We measured the performance of a model in terms
of throughput in training mode for all evaluated accelerators
except GroqNode and latency for the inference mode on
GroqNode and A100s. Table V lists the software development
environments used.

Performance Metrics: Depending on the type of workload
mentioned in Table IV, suitable performance metric is chosen
to provide useful insights. For DL primitives, floating point
operations per second (FLOPS) is used as the performance
metric, and the TFLOPS calculation method of each primitive
is defined in Section IV. For benchmarks throughput - the
processed data samples per second (e.g., images, sequences,
pixels per second) is used as performance metric. For scientific
applications, in addition to throughput, time to solution is also
reported. For distributed experiments, we measure the band-
width per device and the scaling efficiency. We use NVIDIA
A100 as the baseline for our evaluations and compare and
contrast the performance of AI accelerators. For the granularity
of the compute, all DL primitives run on a single device for
each system. For all other workloads, multiple devices are used
and these configurations are discussed for each experiment
in V. The software development environments used for each
system are listed in the Table V.

A. Deep Learning Primitives

We define DL primitives as the basic building blocks of
any deep learning model. The primitives we use are the
most commonly used kernels underlying most DL workloads,
namely, dense matrix multiplication, convolution layer, ReLU,
and recurrent layer. These kernels are also chosen by the
DeepBench [32] suite. Each primitive kernel is run with
all supported precisions on every system. In particular, all
batch sizes listed in this section are used for single precision
(FP32/TF32). For a fair comparison to use the same memory
size, we ran a batch size for half-precision (FP16/BF16)
which is twice the batch size of single precision. Also, mixed
precision in CS-2 runs is equivalent to FP16 in A100s.

1) General Matrix Multiply Layers: The General Matrix
Multiply (GEMM) kernel is at the heart of most DL models.
GEMMs are used to implement fully connected layers, part of
convolution layers, and they are building blocks for recurrent
layers. The performance in FLOPS for the GEMM operation
for matrix sizes of (M, K) and (K, N) is calculated as:
FLOPSGEMM = 2∗M∗N∗K

t , where t is the measured exe-
cution time. The configurations used for evaluation of GEMM
kernels are listed in Table VI chosen from the DeepBench
suite [32], although these systems are capable of handling
significantly larger matrix sizes. We also evaluated GEMMs
with a sweep of matrix sizes up to the maximum value that
can fit on the memory of a single device on each system.

2) Convolution Layers: Convolutions make up the vast
majority of FLOPS in networks that operate on images and
videos and form important parts of networks such as speech
and natural language modeling, thus making them perhaps the
single most important layer from a performance perspective.
For the 2D Convolution operation (Conv2D) on input dimen-
sion of width w, height h, and channel c, FLOPS is cal-
culated as: FLOPSConv2d =

2∗Wo∗Ho∗kf∗c∗fw∗fh∗b
t ,Wo =

w+2∗Padw−fw
Stridew

t,Ho = h+2∗Padh−fh
Strideh

t , where kf is the num-
ber of filters each of dimension (fw, fh) with padding (Padw,
Padh) and stride (Stridew, Strideh), Wo and Ho are the
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effective width and height after applying a filter, b is the batch
size of input data, and t is the measured execution time of each
step. Table VII lists the configurations used.

3) ReLU Layers: Rectified Linear Unit (ReLU) is the most
commonly used activation function in DL models. ReLU takes
one comparison and one multiplication for each input. The
FLOPS of ReLU is calculated as: FLOPSReLU = w∗h∗c∗b

t ,
where w, h, c, and b are the width, height, number of channels,
and batch size of input data, and t is the measured execution
time of each step. Table VIII lists the configurations used.

4) Recurrent Layers: Recurrent neural networks (RNN) are
a class of neural networks that are powerful for modeling
sequence data, such as time series or natural language. There
are various types of recurrent cells, such as vanilla RNNs,
LSTMs, and GRUs. The FLOPS of LSTM is calculated
as: FLOPSLSTM = 2∗4∗s∗i∗h∗b+2∗4∗s∗h∗h∗b

t , where i and
h represent the input and hidden dimension, and s and n
represent the time step and batch size of input data. The
configurations used in this work are listed in Table IX.

B. Benchmarks

In this section, we briefly describe the benchmarks and
associated parameters used for our evaluation study.

1) U-Net: U-Net [65] is a convolutional neural network for
biomedical image segmentation. The model used in this work
aims at the task of brain MRI image segmentation [66]. The
reference implementation is available at [67].

2) BERT: BERT (Bidirectional Encoder Representations
from Transformers) [68] is a transformer model that is pre-
trained on the English language corpus dataset in a self-
supervised manner. It learns the inner representation of the
text, which is used to extract features for downstream tasks.
In this work, we used the pretraining phase of the BERT-
large model with Wikipedia and BookCorpus datasets. For
the inference mode evaluation, we used the DistilBERT model
implementation.

3) ResNet-50: ResNet-50 [69] is a deep residual network,
which is a subclass of convolutional neural networks with
50 layers, popularly used for image classification tasks. In this
work, we ran the model with the ImageNet dataset [70] and
ran both training and inference with single and half floating
point precision types.

C. Scientific Machine Learning Applications

Some science applications have been successfully ported
and run on these AI accelerators. We chose two scientific
machine-learning applications from different science domains
that are important to DOE missions. These specific appli-
cations were chosen as they are ported on all the chosen
systems, which helps to evaluate their performance across
those accelerators.

1) BraggNN: X-ray diffraction-based microscopy tech-
niques, such as High Energy X-ray Diffraction Microscopy
(HEDM), rely on the high precision (sub-pixel) position of
Bragg diffraction peaks. These positions are conventionally
computed by fitting the observed intensities to a theoretical

peak shape, such as pseudo-Voigt [63]. As experiments be-
come more complex and detector technologies evolve, the
computational cost of the conventional method becomes the
main bottleneck of in-situ experiments. BraggNN [63] is a
neural network designed to localize Bragg peak positions
much more rapidly than conventional pseudo-Voigt peak fit-
ting. An appropriately trained BraggNN can extract the Bragg
peak information significantly faster than traditional analytical
methods. Thus, a key challenge is providing trained Brag-
gNN models at timescales compatible with the experiments
to accommodate the extremely high data rates at modern
synchrotron beamlines [11]. The reference PyTorch implemen-
tation is at [71].

2) CANDLE Uno: CANDLE [64] focuses on building a
single scalable deep neural network that can address problems
related to precision medicine for cancer cure. Here, we focus
on one application, Uno, which aims to predict the drug
response based on molecular features of tumor cells and drug
descriptors. The reference implementation is hosted at [72].
Uno is evaluated with datasets of two sizes, a smaller dataset
with 61876 training samples, and a larger dataset with about
20 million training samples. We use an AUC configuration to
train the model till a certain validation loss value (0.0054) is
met when we measure the model throughput.

D. Collective Communication and Scalability

We measured the network bandwidth incurred with col-
lective communication calls, which constitute a significant
portion of a distributed implementation. We also performed
a scalability study to evaluate the performance of models with
an increasing number of devices.

1) Collective Communication Bandwidth: Neural networks
today are often trained across multiple devices. Synchronous
techniques rely on keeping the parameters on all instances of
the model synchronized, usually by making sure all instances
of the model have the same copy of the gradients before taking
an optimization step. The primitive usually used to perform
this operation is called All-Reduce. This collective is observed
to be the most dominant of the collective communication
operations in a typical DL training run, hence we chose to
evaluate the bandwidth with this operation. The configurations
used in this experiment include 16,777,216 floats for 2, 4, and
8 ranks and 64,500,000 floats for 16 ranks.

2) Scalability Study: For this study, we performed an
evaluation to understand how a model’s throughput varies with
an increasing number of devices. This exercise is important
and timely, as these accelerators would need to scale out to
address challenges with larger problem sizes in the near future.
We scaled the number of devices of A100, SN10 RDU, and
GC200 IPU from 1 to 8 running U-Net with the Kaggle-3m
dataset on SN10-8 and ResNet-50 with CIFAR-100 dataset on
A100 and IPU-M2000 systems. We carried out both strong
and weak scale runs. For strong scaling, the cumulative batch
size is fixed at 128 for all systems, e.g., batch size of 128
for 1 A100 GPU and batch size of 16 for 8 A100 GPUs. For
weak scaling, the batch size on each device is fixed batch at
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128, and the cumulative batch size increases as the number of
devices grow.

V. IMPLEMENTATION AND RESULTS

Below we discuss the implementation details of our work-
load evaluations, their results, and observations. For baseline
implementations on A100 GPUs, we plan to explore additional
optimizations as part of our future work.

A. Evaluation of DL Primitives

We implemented the DL primitives with optimizations,
such as pipelining, to exploit the advantages of the dataflow
architecture underlying these accelerators. These optimizations
help maximize data reuse by taking advantage of the larger
capacity of SRAM compared to traditional architectures such
as GPUs. For DL primitives experiments, this is achieved by
repeating a layer of particular primitive multiple times, thereby
enabling pipelined execution.2

0

50

100

150

200

250

gemm_k1 gemm_k2 gemm_k3 gemm_k4

TF
LO

PS

GEMM Kernels

A100 (tf32) GC200 IPU (fp32) SN10-RDU (fp32)
A100 (fp16) GC200 IPU (fp16) GroqCard(fp16)
SN10-RDU (bf16) A100 (bf16)

(a) GEMM performance

0

50

100

150

200

250

512
1536

2560
3584

4608
5632

6656
7680

TF
LO

PS

Size of square matrices

A100 (fp16) GC200 IPU (fp16) SN10-RDU (bf16)

GroqCard (fp16) A100 (tf32) GC200 IPU (fp32)

SN10-RDU (fp32)

(b) GEMM scaling study

Fig. 1: GEMM Evaluation

1) General Matrix Multiply Layers: We ran GEMM kernels
with two test cases: (i) a set of configurations from Table VI
and (ii) a scaling study to stretch the matrix sizes until they
saturate a device. Figure 1(a) shows the performance for the
selected set of configurations and Figure 1(b) shows the scal-
ing performance. For full-precision and half-precision modes
(TF32/FP32, FP16), A100 reported highest FLOPS, while
for BF16 SN10-RDU has higher performance than A100 for
first three kernels, while has lower performance for gemm_k4
with larger matrix sizes. It can be observed that each system
saturates at different matrix sizes given the limits on on-chip
memories. Also, on each system, runs with lower precision
could accommodate larger sizes than with higher precision
because of lower memory requirements. We also observed a
sub-linear speedup with increasing matrix sizes for all systems
other than Groq, which has a 20-cycle loading time for the
weights matrix to load into the MXM plane. Then it’s linear
results for a larger activation matrix.

The parameter batch_size is optimized for each system
to take full advantage of available SRAM. Strategies such
as on-device loops and repeating of GEMM layers are used
to further improve performance for each system. For the
SN10-RDU system, in addition to these general optimizations,
the parameter micro-batch_size is also optimized to

2Evaluation of CS-2 for DL primitives is not included as these kernels
are not reflective of its potential performance.

match the dimension of a matrix. The equation used to
calculate FLOPS is modified to account for a change in
computing caused by these optimizations. In addition to the
model performance metrics, we also profiled and characterized
the workloads on the evaluated accelerators. Specifically, we
measured the compute and memory utilization on each device
with kernel gemm_k4 for GEMM primitive listed in Table
X.3 The compute utilization numbers show that compilers can
do an effective job of mapping computation to their chips on
each system.

2) Convolution Layers: Figure 2 shows the performance
of the Conv2D primitive across different systems with sup-
ported precision. The list of kernel configurations used in this
work exhibit varying behavior. Kernels conv_k1_fw and
conv_k2_fw are memory-bound, whereas conv_k3_fw
and conv_k4_fw are compute-bound. On A100, for the
forward pass in training mode, half-precision cases have an
average of 1.70× performance improvement compared to
single-precision cases due to different performance support
for the two kinds of formats. A100 performs worse on
conv_k1_fw and conv_k2_fw than conv_k3_fw and
conv_k4_fw, which shows that A100 accelerates compute-
intensive convolution operations better. The same observation
also applies to SN10 RDU. GC200 IPU in half-precision mode
exhibits larger speedups on an average 3.88× over single-
precision cases, indicating that GC200 IPU is more sensitive to
the data format in the Conv2D kernel. For the backward pass
in training mode, A100 performs best on conv_k2_bw and
conv_k3_bw, SN10 RDU performs best on conv_k1_bw
and conv_k4_bw kernels.

In inference mode, GroqCard has two orders of mag-
nitude lower latency than A100 on conv_k1_fw and
conv_k2_fw. GroqCard has 4.57× and 2.87× lower latency
than A100 on conv_k3_fw and conv_k4_fw. Similar
latency is observed on GroqCard using single-precision and
half-precision formats. Since convolutions are matrix-matrix
multiplications, the dedicated MXM for matrix multiplications
and the VXM for bitwise multiplications, combined with the
idea of dataflow pipelines avoid write-backs to memory and
allow for optimized performance.

3) ReLU Layers: Figures 3(a) and 3(b) show the perfor-
mance of the ReLU primitive across different systems in
training and inference mode respectively. In training mode, for
all devices, half-precision (FP16 and BF16) cases get almost
twice the performance than single-precision (FP32 and TF32)
cases, because half-precision cases have only half the amount
of memory accesses. Especially, SN10 RDU achieves the best
TFLOPS in all cases because its memory access unit, Pattern
Memory Unit (PMU), is designed for high-performance on-
chip data transfer. In inference mode, GroqCard has the lowest
latency in all cases.

4) Recurrent Layers: As seen from Figure 4, for the for-
ward pass in training mode, the performance of GC200 IPU in

3GEMM Size 1000 is used for GroqNode as this is the largest matrix size
supported by GroqView at the time of experimentation with an older SDK.
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Fig. 3: ReLU and ResNet-50 Evaluation

single-precision cases is on average 1.93× higher than A100.
GC200 IPU, SN10 RDU and A100 have similar half-precision
performance. For the backward pass in training mode, GC200
IPU and A100 have almost the same performance in single-
precision cases, whereas A100 performs much better than
GC200 IPU in half-precision cases. SN10 RDU outperforms
A100 and GC200 IPU in the backward pass and achieves
an average of 1.57× and 2.53× performance improvement,
respectively. In inference mode, GroqCard gains from batching
as it uses matrix-vector multiplications that don’t fill up the
MXM planes. With increased batch sizes, the additional inputs
fill the spare cycles in the schedule between bursts of weight
loading onto the MXM plane which boosts performance.

B. Evaluation of DL Benchmarks

1) U-Net: Figure 5(a) shows a log-plot of the throughput
(number of samples/s) of the U-Net model. The model was
run with the largest image size that fits on the A100 i.e.
256x256, with a sweep of global batch sizes from 16 to
256. Here, we present results for two batch sizes, 32 and
256. The implementations on A100 and SN10-RDU use
PyTorch, while IPU-M2000 uses TensorFlow, and CS-2 uses
TensorFlow Estimator Framework4. For a smaller batch size
of 32, throughput improvements observed for 8 SN10-RDUs,
1 CS-2, and 8 GC200 IPUs against 8 A100s are 2.1×, 4.9×,
and 10× respectively. With a larger batch size of 256, these
speedup factors are 0.7× 5, 3.1×, and 3.3× respectively. It is
obvious that the speedup factors are low for large batch sizes

4The Cerebras U-Net implementation is in experimental face. A PyTorch
implementation is work in progress.

5With the software release (v1.13) this speedup is increased to 2.1x

with the increased memory consumption on each device. The
interconnect bandwidth on the evaluated systems is sensitive
to the batch size; distributed runs with batch size 256 vs. 32
result in a 3× difference for 8 A100s, 1.02× for 8 GC200
IPUs, and 0.93× for 8 SN10-RDUs.

When the number of devices are scaled from 1 to 8 across
A100s, SN10 RDUs, and GC200 IPUs for a batch size of 32,
the Scaling Efficiencies (SE) observed are 18.8%, 42%, and
79.6% respectively. Similarly, for a larger batch size of 256,
the SEs measured are 52%, 28%, and 79.5% respectively. For
IPUs, this is primarily due to efficient data loading from CPU
to IPUs with multiple CPU instances per host

These AI accelerators also support U-Net with larger image
sizes. On the CS-2, given the largest number of cores on a
single device, U-Net can be trained on much larger image
sizes as-is, while the runs on SN10-8 and GC-M2000 need
data and model-parallel implementations.

2) BERT: The throughput values of the BERT-large model
on evaluated accelerators are shown in Figure 5(b). For train-
ing runs, we used BERT-Large with the Wikipedia Corpus
data set. We tested a TF2 BERT implementation on A100,
a TF Estimator BERT implementation on CS-2, and PyTorch
BERT implementations on SN10-8 and IPU-M2000, with a
global batch size of 256 and a maximum sequence length
(MSL) of 128 for all runs.6 We observe SEs of 97% and
93% on A100 and SN10-8 as we scale from a single device
to 8 devices. Similarly, on IPU-M2000, we observe linear
scaling to 8 IPUs. The performance of CS-2 is 2.3×7 higher
than that on 8 A100s, because of its ability to fully exploit

6Evaluation with a sweep of batch sizes and MSLs is work in progress.
7CS-2 performance increases 10% with a batch size of 1024
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Fig. 4: RNN Evaluation
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Fig. 5: Performance evaluation of U-Net, BERT, and BraggNN

the compute, memory, and interconnect capability of the
wafer-scale engine. Both SN10-8 and IPU-M2000 systems
reported lower throughput numbers than A100. These values
are 0.67× and 0.61× for 8 SN10 RDUs and 8 GC200 IPUs
compared with 8 A100s. For inference mode runs on a single
A100, GC200 IPU, and GroqCard with a BERT-Base model,
DistilBERT [73], the throughput measured is 76, 658, and
1012 respectively. Compared to an A100, we observed 9× and
13× improvements for batch-1 inference on an GC200 IPU
and GroqCard respectively. In GroqCards, the low latency of
the SRAM loading at 10TB/s contributes to this speedup.

3) ResNet-50: The evaluation results for this model are
shown in Figure 3(c) for both training and inference. The
throughput values for half/mixed (FP16/amp) precision com-
pared with full precision (TF32/FP32) for A100 and GC200
IPU systems are 2.75× and 1.25×, respectively. The inference-
only Groq performs significantly better for this benchmark.
The pipeline efficiently streams data from MEM to the MXM
for the matrix multiplications and then to the VXM for
performant ReLU. The ResNet-50 implementation for A100
uses PyTorch, whereas GC200 IPU uses Tensorflow. We tested
for various combinations of batch sizes on all systems and have
captured the best performance for comparison.8

C. Evaluation of Scientific Machine Learning Applications

1) BraggNN: For this application, we measure the end-to-
end execution time in seconds and throughput for varying
batch sizes and 500 epochs for 25464 samples. This appli-
cation is run with FP16 precision on A100 and GC200 IPU,

8SN10-RDU and CS-2 do not currently support the ResNet-50 model.

BF16 on CS-2, and mixed precision on SN10 RDU. CS-2
leverages its multi-replica mode of execution with 16 replicas
on the wafer.9 As observed from the throughput results in
Table II, there are benefits of using a large batch size for
GC200 IPU 10, but the throughput gets worse with a very big
batch size because the training process changes from compute-
bound to IO-bound. We further measure the split of the end-
to-end execution time in Figure 5(c) which is composed of (a)
model training time and (b) fixed time which includes fabric
programming and data pipeline time. SN10 RDU and GC200
IPU achieve the lowest end-to-end execution time and achieve
up to 1.55× and 1.46× speedup compared to A100. However,
even though the fixed time on CS-2 is higher than other
systems, it still reports the highest throughput. On A100, the
fixed time is short, however, the model training time dominates
the end-to-end execution time. For the SN10 RDU, the forward
and backward graphs of BraggNN are mapped spatially on the
same chip. With the inference mode, measuring the latency
per image (microseconds), we observed 50 microseconds on
GroqChip compared against 570 microseconds on an Intel
Xeon CPU on average for an input size of 10K samples with
batch size 1.11

2) CANDLE Uno: While the A100 and IPU-M2000 sys-
tems use the TensorFlow-Keras framework, SN10-8 and CS-2
use PyTorch and TensorFlow-Estimator-based implementation.
For the compute-intensive AUC configuration of the Uno

9On A100, MIG mode was not a feasible option as it lacks inter-instance
communication support. Evaluation with MPS mode is ongoing work.

10GC200 uses 2 IPUs, one for training and other for validation
11Experiments of BraggNN in inference mode on A100 is ongoing work.
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TABLE II: BraggNN Throughput (in order of 1k samples/sec)
with various batch sizes (BS)

System BS=512 BS=1024 BS=2048
CS-2 (FP16) 1365.4 2463 2787.9
GC200 IPU (FP16) 478.0 350.6 219.9
SN10 RDU (BF16) 369.7 449.8 518
A100 (FP16) 53.9 65.5 73.7

TABLE III: Uno Performance Evaluation with Full Dataset

System #Units Batch size Throughput
(samples/sec)

CS-2 (mp) 1 CS2 WSE 2000 872258.7
GC200 IPU (FP16) 1 IPU 512 46123
SN10-8 (BF16) 2 RDUs 16 31958
A100 (TF32) 1 GPU 512 7567

model with a batch size of 32, a throughput of 10,184, 35,301,
and 32,323 samples/s was observed on A100, SN10-8,12 and
GC200 IPU, respectively, i.e., a 3× speedup on the accel-
erators compared to the A100.13 The measured throughput
reflects the model’s performance and does not include the
data pipeline. Next, the Uno model was trained with a larger
dataset to stress the I/O system and evaluate how it impacts
the throughput. The results are listed in Table III.14 SN10-8
uses a spatial mapping implementation that maps the model
across 2 SN10 RDUs. The performance can be significantly
enhanced by using a data-parallel framework to process the
large number of data samples across multiple SN10 RDUs.
On the CS-2 system, we make use of 9 worker nodes that
efficiently handle the input data pipeline and data streaming for
this large dataset. We can also deploy a multi-replica execution
mode to achieve better chip utilization and throughput. Though
we train with a batch size of 256 on a single GC200 IPU, we
can accommodate larger batch sizes by using a data-parallel
framework across IPUs.

From the results, we observe speedups of 115×, 6×, and
4.2× on CS-2, IPU-M2000, and SN10-8 respectively com-
pared to A100. Given that the Uno application has a very
large collection of data samples with a rather small model, it
is inherently I/O-bound. This limitation can be overcome by
using accelerators that have novel techniques to address the
problem of I/O bottleneck with optimized data input pipelines.

D. Evaluation of Collective Communication and Scalability

1) Collective Communication Bandwidth: The
All_Reduce bandwidth observed is shown in Figure 6(a)
for the message sizes and ranks as mentioned in Section
IV-D1. We test 2, 4, 8, and 16 devices on A100 and IPU-
M2000 and 2, 4, and 8 devices on SN10-8 and GroqNode,
all with FP32 precision. The observed bandwidths on A100
and IPU-M2000 are higher because they provide higher
communication bandwidth of 300 GB/s and 320 GB/s using

12Evaluation of Uno on 1 SN10 RDU is work in progress.
13Uno with AUC configuration was not run on CS-2 owing to smaller

dataset size which does not use the wafer efficiently.
14Evaluation of Uno with same hyper-parameters is work in progress

NVSwitch and IPU-Link, respectively. The bandwidth per
device reduces as we increase the number of devices for A100
and GC 200 IPUs, whereas the SN10-RDU and Groq systems
seem to saturate the achievable bandwidth as the number of
devices increases. For the bandwidth utilization, A100 and
IPU-M2000 achieve 33.5% and 15.4% on 16 devices, and
SN10-8 and GroqNode reach 26.6% and 20% on 8 devices.

2) Scalability: Figures 6(b) and 6(c) show the achievable
throughput scaling for U-Net in strong and weak scaling runs,
respectively. We used an image size of 256 x 256 with a
fixed batch size of 128 for all devices (fixed problem size)
for strong scaling and a batch size of 128 (increasing problem
size with scale) for weak scaling. Scaling is computed by
the performance of an accelerator as we scale the number
of devices over a single device of the same system in a data-
parallel mode. A100 and IPU-M2000 exhibit similar scaling
behavior, especially for strong scaling, which indicates that
they can maintain the performance per device even though
the batch size is gradually reduced. However, for SN10-8, the
speedup of weak scaling is 24.1% better than that of strong
scaling on average, which shows it is sensitive to batch size.

VI. INSIGHTS

Below we discuss key insights from these experimental
evaluations and list some challenges that must be addressed
for mainstream adoption of AI accelerators in scientific AI.

A. Porting efforts

As each AI accelerator has the software stack optimized and
tuned for that platform, it is essential to port a deep learning
model encoded in existing implementations, such as Ten-
sorFlow and PyTorch, to the respective accelerator software
API, e.g., SambaNova SambaFlow, or preferred framework
implementation, e.g., TensorFlow Estimator for TensorFlow
code in Cerebras. Some accelerators can run models in native
implementations (TensorFlow or PyTorch) as is; however,
there are challenges in porting efforts due to a lack of support
for some operators. Nonetheless, existing software stacks
across these systems support many DL operators, and support
for additional operations is expected to be available in future
software releases.

B. Impact of compute and memory capacity on throughput

On the SambaNova DataScale system, models with a large
number of parameters can be served directly from the SN10
RDU on-chip SRAM given high bandwidth availability on
RDUs in the range of a few 100s of TB/s. This also aids
models on the Graphcore IPU-M2000 systems. Similarly, the
CS-2 WSE with a large number of compute cores with on-
chip memory is particularly well suited for running massive
models efficiently. For smaller models, such as BraggNN,
CS-2 offers a multi replica mode to run multiple copies of
the same model using data parallelism, thereby increasing the
chip utilization and net throughput. For models wherein the
data processing or interconnect performance is critical, such
as data-parallel training, we observe that the DGX A100 still
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Fig. 6: Experimental results of bandwidth measurement and scaling studies.

shines due to the architecture of NVLink, NVSwitch, and the
available bandwidth. For inference jobs, the architecture of the
GroqChip enabled highly effective runs at a batch size of 1.

C. Compilation time

The common steps in a model execution involve the genera-
tion of the intermediate graph representation in the compilation
phase, followed by optimization of the generated graph, and
finally mapping of the graph onto the hardware units. The most
critical component in a model execution is the compilation
phase, which directly influences the mapping of the operators
to leverage the hardware. It has been observed that the compile
time can be significantly large on some of these systems. Min-
imizing the compile time would further help in the effective
use of the accelerators.

D. Support for traditional HPC applications

A large number of science applications and simulations
being run on supercomputers have no AI components in them.
It is interesting to see how AI accelerators can push their
capabilities to accelerate traditional computations as this area
has gained traction recently. Though there is progress in the
software stacks to run HPC simulation codes on these AI
accelerators, it still needs to mature in order to cater to diverse
HPC applications.

E. Determining the best accelerator for a given workload

Based on our experimental evaluations, it is evident that
determining the most efficient accelerator for a given model
is nontrivial. However, some observations can be made. Large
compute-intensive models can run on the Cerebras CS-2
system without a distributed implementation. The SambaNova
SN10-8 system can support models with large on-memory
requirements and at scale. The performance advantage of
spatial auto kernel fusion in a dataflow architecture vs non-
spatial execution in a Von-Neumann architecture can often
only be demonstrated with end-to-end applications (such as
BraggNN and Uno), and not with individual kernels. The
Graphcore IPU-M2000 system enabled highly effective dis-
tributed implementations, while GroqNode enabled efficient
inference runs at a batch size of 1. However, given the variation
in the hardware and software features, support for operators,
supported precision, challenges with distributed implementa-
tion, and the scale of execution, it takes additional investigation
to determine the best accelerator for a given model.

F. Challenges

Going forward, we foresee challenges with deeper integra-
tion of AI accelerators with large-scale computing facilities.
For example, should AI accelerators be strongly coupled as
part of a supercomputer’s node design to minimize data trans-
fer overheads, or should there be a dedicated AI accelerator
partition or a cluster with high-bandwidth connectivity—a
disaggregated system—wherein the simulation and learning
components are partitioned across these resources? There is an
urgent need to develop software and computing environments
for seamless integration into computing facilities. For example,
AI accelerators implement custom interconnect technologies
that are different from the ones used in HPC centers. It is
also critical to designing a mechanism to determine which AI
accelerator would yield the best performance on an AI model,
and how these models can be built and tuned for that particular
hardware and software. Also essential is incorporating explicit
science domain knowledge into AI systems and hardware to
improve robustness and capabilities.

VII. CONCLUSIONS AND FUTURE WORK

We presented an overview of different AI accelerators that
are designed to boost the efficiency of machine learning tasks
and are seeing increasing adoption in the ML community. We
then presented a systematic study of these systems with a
variety of workloads and provided detailed insights into the
observed performance. The performance results indicate that
the novel hardware and software features of the accelerators
do enable efficient model execution. We also presented a
list of challenges and opportunities based on the growing
needs of the scientific machine learning community. As part
of future work, we plan to continue the study with sparse
tensor operations and additional scientific workloads, such as
large language models (e.g., GPT), graph neural networks,
AI-driven simulation applications, and novel implementations
across platforms along with power efficiency metrics.
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APPENDIX

TABLE IV: Evaluated Workloads

Type Tasks

DL Primitives GEMM, Convolution, ReLU, RNN
Benchmarks U-Net, BERT-Large, ResNet-50
Scientific Applications Uno, BraggNN
Miscellaneous Collective communications, Strong and

weak scaling runs

TABLE V: Software Configurations

System Software

Nvidia CUDA 11.2, CuDNN 8, Tensorflow 2.6, PyTorch 1.12.1
SambaNova SambaFlow 1.12
Cerebras Cerebras Software 1.5
Graphcore Poplar 2.4.0
Groq GroqWare™ suite 0.8.5

TABLE VI: GEMM Configurations

Name M N K
gemm k1 64 1760 1760
gemm k2 2560 64 2560
gemm k3 1760 128 1760
gemm k4 2560 2560 2560

TABLE VII: Convolution Configurations

Name width (w) height (h) channel (c) batch (b) kernel filter w filter h pad w pad h
conv k1 7 7 32 131072 32 3 3 0 0
conv k2 14 14 128 4096 256 3 3 1 1
conv k3 54 54 16 256 1024 3 3 1 1
conv k4 128 128 32 1024 128 5 5 0 0

TABLE VIII: ReLU Configurations

Name width (w) height (h) channel (c) batch (b)
relu k1 7 7 32 262144
relu k2 14 14 128 16384
relu k3 54 54 1024 128
relu k4 128 128 128 128

TABLE IX: RNN Configurations

Name time step(s) batch size(n) input size(i) hidden size(h)
rnn k1 50 64 256 256
rnn k2 25 32 512 512
rnn k3 25 16 512 512
rnn k4 50 32 512 512

TABLE X: Profile metrics for gemm_k4 kernel

System Profiling
Tool

Compute
utilization

Memory
utilization

A100 NSight 92.68% 76.15%
SN10-RDU SambaFlow 84.38% 94.53%
GC200 IPU PopVision 87.36% 83.14%
GroqCard GroqView 76.62% 99.14%
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