
Thorough Characterization and Analysis of Large
Transformer Model Training At-Scale

SCOTT CHENG∗, The Pennsylvania State University, USA
JUN-LIANG LIN, The Pennsylvania State University, USA
MURALI EMANI, Argonne National Laboratory, USA
SIDDHISANKET RASKAR, Argonne National Laboratory, USA
SAM FOREMAN, Argonne National Laboratory, USA
ZHEN XIE, Binghamton University, USA
VENKATRAM VISHWANATH, Argonne National Laboratory, USA
MAHMUT T. KANDEMIR, The Pennsylvania State University, USA

Large transformer models have recently achieved great success across various domains. With a growing
number of model parameters, a large transformer model training today typically involves model sharding,
data parallelism, and model parallelism. Thus, the throughput of large-scale model training depends heavily
on the network bandwidth since a combination of model sharding and multiple parallelism strategies incurs
various costs. However, prior characterizations of transformer models on high-bandwidth DGX machines that
use TFLOPS as a metric may not reflect the performance of a system with lower bandwidth. Furthermore,
data and model parallelism reveal significantly distinct training profiles on different system bandwidths at
scale and, thus, need a thorough study.

In this paper, we provide a bottom-up breakdown of training throughput into compute and communication
time, and quantitatively analyze their respective influences on overall end-to-end training scaling. Our
evaluation involves an in-depth exploration of data parallelism, scaling up to 512 GPUs with limited bandwidth,
and examines three model sharding strategies among six model sizes. We also evaluate three combinations of
model parallelism on both high and low bandwidth supercomputing systems. Overall, our work provides a
broader perspective on large-scale transformer model training, and our analysis and evaluation yield practical
insights for predicting training scaling, shaping the future development of supercomputing system design.

CCS Concepts: • Computing methodologies→Machine learning; • General and reference→ Evaluation;
• Networks→ Network performance evaluation.

Additional Key Words and Phrases: large language model

ACM Reference Format:
Scott Cheng, Jun-Liang Lin, Murali Emani, Siddhisanket Raskar, Sam Foreman, Zhen Xie, Venkatram Vish-
wanath, and Mahmut T. Kandemir. 2024. Thorough Characterization and Analysis of Large Transformer

∗Work done during internship at Argonne National Laboratory.

Authors’ addresses: Scott Cheng, The Pennsylvania State University, University Park, USA, contact@chengscott.io; Jun-Liang
Lin, The Pennsylvania State University, University Park, USA, jpl6521@psu.edu; Murali Emani, Argonne National Laboratory,
USA, memani@anl.gov; Siddhisanket Raskar, Argonne National Laboratory, USA, sraskar@anl.gov; Sam Foreman, Argonne
National Laboratory, USA, foremans@anl.gov; Zhen Xie, Binghamton University, USA, zxie3@binghamton.edu; Venkatram
Vishwanath, Argonne National Laboratory, USA, venkat@anl.gov; Mahmut T. Kandemir, The Pennsylvania State University,
University Park, USA, mtk2@psu.edu.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right
to publish or reproduce this article, or to allow others to do so, for Government purposes only. Request permissions from
owner/author(s).
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2476-1249/2024/3-ART8
https://doi.org/10.1145/3639034

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

https://doi.org/10.1145/3639034
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639034&domain=pdf&date_stamp=2024-02-21

8:2 Scott Cheng et al.

12% 49% 77% 91% 92% 93%

0%

20%

40%

60%

80%

100%

125M 1.3B 2.7B 6.7B 13B 18.4B

Ti
m

e
di

st
rib

ut
io

n

Compute Communication

Fig. 2. Time distribution of compute and com-
munication per training iteration for increasing
transformer model sizes. 2

0 20 40 60 80 100

0 2,000 4,000 6,000 8,000

Polaris

DGX

TFLOPS

Iteration time (ms)

Compute Time Communication Time FLOPS

Fig. 3. FLOPS (floating-point operations per sec-
ond) metric can not fully reflect the underlying ex-
ecution profile, especially in a bandwidth-limited
system as opposed to DGX systems. 3

Model Training At-Scale. Proc. ACM Meas. Anal. Comput. Syst. 8, 1, Article 8 (March 2024), 25 pages. https:
//doi.org/10.1145/3639034

1 INTRODUCTION

GPT-2 (1.5B)

Megatron-LM (8.3B)

GPT-3 (175B)

PaLM (540B)
Megatron-1T

6

60

600

6,000

1

10

100

1,000

2017/09 2019/02 2020/06 2021/10 2023/03

Es
tim

at
ed

 c
om

m
un

ic
at

io
n

vo
lu

m
e

pe
r G

PU
 (G

B)

M
od

el
 p

ar
am

et
er

s (
B)

Fig. 1. The evolution of transformer model parameters and
estimated per-GPU communication volume during training
where names and cross marks present the state-of-the-art
models at that time. 1

With the emergence of ChatGPT [28] and
the subsequent advancements of Copi-
lots [13] and GPT4 [29], large transformer
models have become the vanguard of the
current AI revolution and catalyze the
surge of generative AI exemplified by Sta-
ble Diffusion [38] and DALL-E [35]. Mean-
while, their capabilities are evolving be-
yond content generation, leading to mul-
tifaceted scientific breakthroughs, such as
the protein structure prediction demon-
strated in AlphaFold [19] and whole
genome analyses during the COVID-19
pandemic showcased by GenSLM [52].
This widespread adoption of transformer
models brings profound social and eco-
nomic impacts. For example, a recent OpenAI study [12] reveals that about 80% of the U.S. workforce
could undergo changes in at least 10% of their daily tasks due to the growing prevalence and inte-
gration of large language models (LLMs) in various sectors and industries. This insight emphasizes
the increasing importance and transformative potential of introducing large transformer models.
Consequently, given the emergent capabilities in transformer models [1, 45], the transformer model
parameters are doubling every 4 months, as depicted in Fig. 1.

1The figure is adapted from the data in [14, 16]. The communication volume is estimated to be three times themodel parameter
size, assuming ZeRO-3 data parallel training with a half-precision model weight. In practice, the actual communication
volume typically is higher than our estimation due to the additional memory consumption in model parallelism.
2The figure exhibits evaluations of GPT models on Polaris with 16 GPUs.
3The figure presents evaluations of an 18.4B GPT model on 64 GPUs. The per-GPU FLOPS can be higher if the batch size is
larger, but we use batch size one on both systems for illustration purposes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

https://doi.org/10.1145/3639034
https://doi.org/10.1145/3639034

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:3

Moreover, due to the growing number of parameters in state-of-the-art transformer models
and the limited memory capacity per GPU, various parallelism and sharding strategies must be
considered during the training process. For example, training a half-precision transformer model
with the Adam optimizer [22] typically requires a memory capacity as much as 12 times the size
of the model parameters. With appropriate data and model parallelism, we can both scale up the
training of large transformer models and reduce memory usage per GPU. However, the substantial
increase in model size amplifies the communication volume during end-to-end training. As shown
in Fig. 2, the growth in transformer model size leads to a proportionally higher communication
time during each training iteration. The need to communicate model weights and activations
across the entire system during data and model parallelism training significantly stresses the
system network bandwidth, and a system with a lower interconnection bandwidth may reshape the
large transformer training landscape at scale. Additionally, different sharding strategies, including
data and model parallelism, incur various communication volumes, leading to various training
throughput. Data parallelism is the most commonly employed in training, and specifically, in
the large transformer training context, data parallelism is typically combined with three kinds of
model sharding levels. Overall, the increasing number of model parameters significantly impacts the
overall system throughput, as the rise in communication volumes affects the end-to-end transformer
model training throughput at-scale.

However, more than 40% of TOP500 supercomputers [26] are only equipped with an interconnect
link speed of 100 Gb/s-equivalent or less4, in contrast to an NVIDIA DGX machine that comes
with eight Infiniband HDR (200 Gb/s) per node or higher in a newer generation. Therefore, recent
studies [27, 34] on those high bandwidth servers does not fully capture the large transformer
model training landscape in terms of training throughput and scalability. For instance, Fig. 3 shows
that, only the TFLOPS metric, which is widely adopted and reported in many DGX system results,
cannot fully reflect the overall training throughput. In contrast, a compute and communication
breakdown provides a clear causality of the execution profile and thus gives reasoning for training
the model at-scale. Moreover, since data-parallelism is the most common and applicable to every
large-scale transformer model training, we mainly focus on characterizing the data-parallel large
transformer model comprehensively, and our characterization complements prior works’ study
on sophisticated model parallelism and auto-parallelization strategies, as well as compute and
memory optimizations. We study how the underlying system leads to compute and communication
breakdown during model training, thereby contributing to the end-to-end training throughput.
Motivated by the observations above, in this paper, we characterize large transformer model

training at scale using the state-of-the-art Megatron-DeepSpeed [3] training framework. Specifically,
we compare how data parallelism scales acrossmultiple nodes on three supercomputing systems, and
provide amulti-node scalability estimation based on 8-GPU profiling andmulti-node communication
efficiency. In addition, we analyze three dimensions of model and data parallelism combinations
under a limited network bandwidth. Thus, the main contributions of this work are as follows:
• We empirically evaluate end-to-end transformer training on both high-bandwidth (DGX) and
low-bandwidth systems with various compute capabilities up to 512 GPUs, six model sizes up to
18.4B, 3 data parallel sharding strategies (ZeRO stages), 3 combinations of model parallelism, and
2 model architectures (GPT and BERT) that involve 4 kinds of collective communication calls,
and provide three emulated limited network bandwidth cases in model parallel scaling.

• We provide a quantitative bottom-up analysis of compute and communication time estimation,
as well as the scaling effects across varying numbers of nodes and sharding strategies. Our
performance modeling is applicable to different model sizes and system architectures. The

4As of June 2023, mainly composed of 100GbE, SlingShot-11, Omni-Path, Infiniband EDR and their prior generations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:4 Scott Cheng et al.

collected results indicate that our speedup prediction yields a mean squared error of less than
2.0%, compared to our evaluation results.

• Our evaluation results for data parallelism training indicate that a lower bandwidth system
may result in a 7.35 times increase in communication time, consequently reducing the overall
training throughput by 59.25%. This impact becomes much more significant in ZeRO-2, where
lower network efficiency leads to even worse scaling on the lower bandwidth system with more
GPUs. This observation was not emphasized in previous works since DGX machines with higher
bandwidth exhibit near-linear speedups, as opposed to our lower bandwidth scaling.
The remainder of this paper is structured as follows. The following section introduces the

transformer model, as well as data and model parallel training. Section 3 establishes the baselines
for evaluation, and presents our scalability analysis. Following that, a bottom-up characterization
from both compute and communication perspectives is conducted in Section 4, and specifically, a
summary of our insights is given in Section 4.5. Finally, the related works are discussed in Section 5.

2 BACKGROUND
In this section, we introduce the transformer model architecture in Section 2.1. We then present
large transformer model sharding strategies and their associated communication volume during
training in Section 2.2. Further, Section 2.3 delves into data andmodel parallelism. Finally, Section 2.4
gives an overview of collective communication calls.

2.1 Transformer Model

Input
A

ctivations

x

Attention
x heads

Add &
Norm MLP Add &

Norm

A
ctivations

layers

Fig. 4. Components of a transformer layer.

Model Estimation

Parameters P 12𝑑2𝑙
FLOPs 𝑏 (72𝑠𝑑2 + 12𝑠2𝑑)𝑙

Activation (bytes) 𝑏 (34𝑠𝑑 + 5𝑎𝑠2)𝑙

Table 1. Estimation of parameters,
FLOPs, and activation memory of a
transformer model.

A transformer model [42] consists of multiple transformer layers and each transformer layer,
depicted in Fig. 4, comprises multi-head attention, MLP (multi-layer perception, pointwise feed-
forward network), normalization, and residual connections between them. To describe a transformer
model, we use the following six notations in the rest of this paper:

• model parameters: P
• the number of transformer layers: 𝑙
• the number of attention heads: 𝑎

• batch size: 𝑏
• input sequence length: 𝑠
• hidden dimension: 𝑑

The activations refer to intermediate tensors during forward propagation that will be used for
gradient calculations during the backward pass. For instance, the output tensor from multi-head
attention, a temporary value during forward pass, is also counted as an activation since it will
be used to compute gradient during backward propagation. Additionally, we refer to the size
of activation as activation memory in the rest of the paper. For an input batch size 𝑏, the input
activation of each transformer layer is a tensor of dimension [𝑏, 𝑠, 𝑑]. Additionally, Table 1 shows
that we can estimate the model parameters, FLOPs (floating-point operations), and activation size
accordingly [23].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:5

Further, GPT [1] and BERT [21] are two representative transformer model architectures built
upon transformer layers. Both models first encode the input sequence by word embedding and
positional encoding. Then, the encoded sequence propagates through multiple transformer layers.
The difference between the two models is that the GPT employs masked attention that restricts
visibility only to partial input, as opposed to BERT, which can capture the entire sequence in each
layer. The output of the transformer layer can be used for probability prediction or completing the
missing tokens in the input sequence.

2.2 Transformer Model Sharding: ZeRO

Sharded
components

Communication
volume (bytes)

ZeRO-1 optimizer state 4P
ZeRO-2 + gradient 4P
ZeRO-3 + model weight 6P

Table 2. Sharded model components and commu-
nication volume per GPU for each ZeRO stage.

During transformer model training, a P-parameter
model needs to consume 16P bytes of memorywhen
using the Adam optimizer [22]. Thus, the ZeRO
(Zero Redundancy Optimizer) [33] technique has
been proposed to address the challenge of accommo-
dating an increasing number of model parameters
into limited GPU memory by sharding model com-
ponents across multiple GPUs. ZeRO offers three
stages, namely, ZeRO-1, ZeRO-2, and ZeRO-3, each
involving a different level of model sharding. As
the sharding level increases, more parameters are
sharded, which leads to higher communication costs but reduces per GPU memory consumption.
Table 2 lists the model components sharded across multiple GPUs and the associated per GPU
communication volume of each ZeRO stage.
Fig. 5 illustrates the training process during each iteration for the three ZeRO stages. In ZeRO-

1, each process performs forward and backward passes in parallel. Once the local gradients are
computed and available, all processes engage in the AllReduce operation to calculate global gradients.
Subsequently, the optimizer updates the weights locally using the global gradients. Each process
then participates in the AllGather operation to collect the updated model weights from all GPUs.
Since both the gradients and the weights consume each 2P bytes, the total communication volume
amounts to 4P bytes, as indicated in Table 2. Moreover, in practice, the backward and optimize
phases are often combined as a pipeline since a process can start collective communication calls once
partial gradients are available. Thus, the figure only depicts the equivalent sequential functionality.
Similarly, the overall training process in ZeRO-2 is similar to ZeRO-1, with one key difference:

the gradients are sharded, and thus, the global gradient only needs to be computed by ReduceScatter.
In practice, the ReduceScatter operation may be implemented using multiple Reduce operations to
effectively hide latency as shown in the figure. On the other hand, in ZeRO-3, besides optimizer
states and model gradients, the model weights are also sharded across multiple GPUs. Consequently,
during both forward and backward propagation, the model weights must be gathered via AllGather,
incurring an additional communication cost of 4P bytes. Then, the global gradient is computed by
ReduceScatter, similar to ZeRO-2. Hence, the communication volume per GPU is 6P bytes, and the
total communication volume across the 𝑔-GPU system becomes 6𝑔P bytes.

2.3 Data and Model Parallelism in Transformer Model
Data parallelism (DP) and model parallelism (MP) are typically employed in the transformer model
training. Moreover, Megatron-DeepSpeed [3] is the state-of-the-art framework offering both data
and model parallelism implementations integrated with ZeRO techniques for large transformer
model training. Unlike data parallelism discussed in the prior section, which partitions the input

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:6 Scott Cheng et al.

GPU 1:

GPU p:

… … …

GPU 1:

GPU p:

… …

AllGather: 2 AllGather: 2 ReduceScatter: 2

Forward Backward & Optimize

Forward Backward & Optimize

…

Reduce: 2

ZeRO-3

GPU 1:

GPU p:

… …

Forward Backward & Optimize

…

ZeRO-2

ZeRO-1

Compute AllReduce AllGather Reduce ReduceScatter

AllGather: 2

AllReduce: 2 AllGather: 2

Time

Fig. 5. Compute and collective communication calls with their associated communication volume (in bytes)
per training iteration for each ZeRO stage, assuming a transformer model of parameter size P. Specifically,
collective communication calls include (1) AllReduce operation sums the local data from each GPU and
distributes the summed result back to all GPUs. (2) AllGather operation combines local data from all GPUs
to each GPU. (3) Reduce operation sums the local data from all GPUs but only places the summed result
in a specific GPU. (4) ReduceScatter operation is equivalent to performing Reduce but scattering different
portions of the reduced data to each GPU.

Multi-Head
Attention MLP

Add &
NormMulti-Head

Attention MLP

Add &
Norm

Tensor parallel: partition 2 (out of 2)Tensor parallel: partition 1 (out of 2)

Multi-Head
Attention MLP

Add &
NormMulti-Head

Attention MLP

Add &
Norm

Pipeline parallel: stage 1 (out of 2) Pipeline parallel: stage 2 (out of 2)

Fig. 6. (pipeline parallelism, tensor parallelism) = (2, 2).

data, model parallelism instead partitions the model activations and comprises pipeline parallelism
(PP) and tensor parallelism (TP) [39].

Fig. 6 illustrates two transformer layers with two pipeline parallelism stages and two tensor
parallelism partitions, with the blue arrows indicating that the activations are sharded or combined
across GPUs. Typically, tensor parallelism is performed within a node (intra-node), whereas pipeline
parallelism is distributed across nodes (inter-node). With a training scheme that considers these
three types of parallelism, the global batch size (GBS) can be computed as follows:

#DP × #TP × #PP ×MBS = GBS, (1)

where MBS denotes micro batch size on each GPU.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:7

2.4 Collective Communication

Operation Communication
volume (bytes)

AllReduce 4(1 − 1
𝑝
)P

AllGather 2(1 − 1
𝑝
)P

ReduceScatter 2(1 − 1
𝑝
)P

Reduce 2(1 − 1
𝑝
)P

Table 3. Estimated per GPU commu-
nication volume for various collective
communication calls for a model size
of 2P bytes on 𝑝 GPUs.

Different collective communications on the same size of data
may incur a different amount of data transferred in the net-
work. Table 3 shows the estimated per GPU communication
volume incurred in the network when performing a collective
communication of a model size of 2P bytes on 𝑝 GPUs [4, 47].
For instance, AllReduce needs to perform 2(𝑝 − 1) data trans-
fers among 𝑝 GPUs, resulting in a communication volume
of 2(𝑝−1)

𝑝
2P = 4(1 − 1

𝑝
)P at best. However, because various

collective algorithms exist, such as ring-based and tree-based
implementations, the latencies may vary, and the actual com-
munication volumes may be higher than the estimations. Fur-
thermore, since we focus on large-scale systems, which typ-
ically involve more than 32 GPUs (𝑝 ≥ 32), the term (1 − 1/𝑝)
only affects the estimation by less than 3.1%. Hence, it can be
ignored in most of the following discussions.
Regarding the comparisons between collective operations, AllReduce requires double the vol-

ume compared to AllGather and ReduceScatter. This is because the AllReduce operation can be
decomposed into an AllGather and a ReduceScatter operation. Although, in practice, AllReduce is
faster than ReduceScatter+AllGather due to further optimizations in the implementation, the latter
scheme is still used because it can better integrate with the training pipeline of transformer models
and improve the overall training throughput.

3 METHODOLOGY
In this section, we first outline our approach to profiling via instrumentation, detailed in Section 3.1.
Next, we introduce the multi-node scalability analysis based on our profiling results in Section 3.2.
Finally, we establish the evaluation baselines in Section 3.3.

3.1 Instrumentation
To gain a deeper insight into the compute and communication patterns exhibited by large-scale
transformer model training, we integrate additional NVTX [8] instrumentation provided by Py-
Torch [30] into the Megatron-Deepspeed [3] framework. The instrumentation provides a granular
view of compute and communication behavior of kernels for each training stage, namely, the
forward, backward, and optimization stages. We first train the model for several iterations and
then retrieve the runtime information from the profiling database generated by NVIDIA Nsight [6],
including CUDA kernels, events, and OS runtime. Based on the NVTX instrumentation information,
we can associate each CUDA kernel or function call to its corresponding training phases.

Further, since a compute kernel might run concurrently with another communication kernel, we
illustrate this scenario with a sample profiling trace in Fig. 7a. The top of the figure presents the trace
for a single GPU consisting of two NCCL AllReduce operations along with four compute kernels.
Given that the compute and communication kernels might overlap with each other, we adopt the
convention in PyTorch profiler [25], to first represent the communication kernel in the execution
time distribution, followed by the compute kernel, as shown at the bottom of Fig. 7a. As a result,
the actual compute duration might be longer than the time shown in the distribution. Nonetheless,
it also indicates no communication kernels will occur during the compute time. Specifically, the
compute time includes both GPUs and CPUs, such as PyTorch operators’ dispatch time. In this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:8 Scott Cheng et al.

kernel

NCCL AllReduce

time

NCCL AllReduce

kernelkernel kernel

Execution time
distribution

Profile trace

Compute AllReduce

(a) Converting a profile trace with overlapping compute and communication
kernels into the execution time distribution.

PyTorch Operator

kernel

PyTorch Operator

kernel

CPU:

GPU: kernel

Intra-op dispatch time Inter-op dispatch time

time

(b) Dissect compute time into kernel execution, intra-op, and inter-op dis-
patch time.

Fig. 7. Top-down interpretation of the profile traces collected by our instrumentation.

example, the time between two NCCL AllReduce operations is marked as “compute" since the gap
typically means the CPU is launching the GPU kernel.

In addition to communication kernels, we also factor in the “overhead" associated with the GPU
compute that contributes to the overall training throughput. This is especially pertinent when
dealing with smaller model sizes, where these overheads are non-negligible. Quantitatively, we
classify the compute time into intra-operator (intra-op) and inter-operator (inter-op) dispatch time,
and kernel execution time. For instance, Fig. 7b illustrates a typical execution timeline consisting
of two PyTorch operators. During the transformer model training, the main program in the CPU
initiates a sequence of PyTorch operators, such as matrix multiplications and multi-head attentions,
and each operator may subsequently launch zero to a few GPU kernels. Effectively, the actual
compute time is the sum of all GPU kernels, but there might be overhead interleaved among
the GPU kernel and PyTorch operator launches. Thus, we define intra-op dispatch time as the
time within each PyTorch operator, excluding the GPU kernel execution time; similarly, we define
inter-op dispatch time as the time between two consecutive PyTorch operators. A more in-depth
analysis of compute dispatch time is given in Section 4.1.

3.2 Scalability Analysis
In general, data parallelism is more scalable than model parallelism, especially in the scale of
hundreds to thousands of GPUs. This is due to the fact that, in data parallelism, only model weights
and gradients are communicated, whereas model parallelism transmits the activation memory. As
detailed earlier in Section 2.1, the activation memory usually surpasses the size of model weights,
and, more importantly, the activation memory increases in proportion to the input batch size. Hence,
our subsequent analysis will focus on examining the scalability of data parallelism for a given
model size. To project the multi-node training throughput, we incorporate the profiling results
from both the single-node training and multi-node network efficiency. As discussed in the previous
section, the duration of each training iteration is the sum of the compute and communication times.
For instance, the following formulation shows the per batch training speedup when increasing the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:9

GPU count from 8 to 16:

speedup8→16 =
𝑡
(8)
iter.

𝑡
(16)
iter.

=
𝑡
(8)
compute + 𝑡

(8)
comm.

𝑡
(16)
compute + 𝑡

(16)
comm.

. (2)

where 𝑡 (8)iter. represents the per-iteration training latency on 8 GPUs, and 𝑡 (8)compute and 𝑡
(8)
comm. denote,

respectively, the per-GPU compute and communication times with 8 GPUs. Similar notation applies
to the 16-GPU setup as well. In general, we introduce the multi-node network efficiency when
scaling from baseline 𝑔 GPUs to 𝑛 GPUs, as:

eff𝑔→𝑛 =
𝑡
(𝑔)
comm.

𝑡
(𝑛)
comm.

. (3)

Thus, the following formula estimates the "end-to-end" speedup from baseline 𝑔 GPUs to 𝑛 GPUs:

speedup𝑔→𝑛 =
𝑡
(𝑔)
iter.

𝑡
(𝑛)
iter.

=
𝑡
(𝑔)
compute + 𝑡

(𝑔)
comm.

𝑡
(𝑛)
compute + 𝑡

(𝑛)
comm.

=
𝑟
(𝑔)
compute + 𝑟

(𝑔)
comm.

𝑟
(𝑔)
compute + 𝑟

(𝑔)
comm./eff𝑔→𝑛

. (4)

where 𝑟 (𝑛)compute = 𝑡
(𝑛)
compute/𝑡

(𝑛)
iter and 𝑟

(𝑛)
comm. = 𝑡

(𝑛)
comm./𝑡 (𝑛)iter . It is to be noticed that obtaining the compute

and communication time distribution per iteration on the baseline system, namely, 𝑟 (𝑔)compute and
𝑟
(𝑔)
comm., and the network efficiency is sufficient to estimate the overall speedup. For instance, from the
8-GPU profiling with instrumentation, we can determine (𝑟 (8)compute, 𝑟

(8)
comm.), and, based onmulti-node

efficiency analysis, we can obtain eff8→16. A detailed efficiency evaluation is given in Section 4.2.

3.3 Experimental Methodology
In this section, we introduce the hardware, software, model, and evaluation setups to establish the
evaluation baselines.

Hardware Platform: We evaluate three GPU supercomputing systems, each with varied com-
pute and networking setups, as detailed in Table 4. Specifically, TG40 and TG80 are NVIDIA
DGX-based high bandwidth systems, and these three systems provide 160 GB, 320 GB, and 640
GB GPU memory per node accordingly. The number of nodes used for scaling evaluation (#Nodes
scaled) is chosen by considering scheduling availability, constraints, and out-of-order nodes. More-
over, compared to Polaris, both TG40 and TG80 have double the number of GPUs per node and
exhibit a higher overall system bandwidth due to a newer generation of compute NICs and an
increased number of NICs per node. To elaborate, NVIDIA Mellanox ConnectX-5 and ConnectX-6
deliver networking bandwidths of 100 Gb/s and 200 Gb/s, respectively.
To figure out the “achievable" bandwidth in the GPU systems, we first perform bandwidth

evaluations using bandwidthTest and p2pBandwidthLatencyTest from cuda-samples [9] on all
GPU systems. Table 4 shows the average memory copy bandwidth for transferring 1GB of data6
between the host and GPU memory and the average bidirectional peer-to-peer (P2P) bandwidth
for communication between two distinct GPUs within a node. Specifically, the host memory used
in memory copy could either be pinned or pageable. The table reveals that while the pinned
memory copy reflects that the achievable PCIe bandwidth is around 25 GB/s, as opposed to the
32 GB/s link speed, the pageable memory copy represents the bandwidth for the most common
GPU memory operations. When comparing the P2P bandwidth, TG40 and TG80 have three times
5ThetaGPU consists of two kinds of system configurations; thus, we distinguish by the two abbreviations: TG40 and TG80.
6The choice of a 1GB data size is based on the largest common memory operations during training and thus may not be
able to fully utilize the entire link bandwidth due to the chosen data size.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:10 Scott Cheng et al.

Polaris TG405 TG805

System HPE Apollo NVIDIA DGX NVIDIA DGX
Nodes 560 22 2
#Nodes (#GPU) scaled 128 (512) 8 (64) 2 (16)
CPU Model AMD 7543P AMD 7742 AMD 7742
CPU Socket(s) 1 2 2
GPU NVIDIA A100 NVIDIA A100 NVIDIA A100
per GPU Memory 40GB HBM2 40GB HBM2 80GB HBM2e
#GPU per node 4 8 8
GPU Memory B/W 1555 GB/s 1555 GB/s 2039 GB/s
#NVLink per GPU 12 (4 per peer) 12 (NVSwitch) 12 (NVSwitch)
Compute NIC ConnectX-5 ConnectX-6 ConnectX-6
#Interconnect per node 2 8 8

Total NIC B/W per node 200 Gbps
(25 GB/s)

1.6 Tbps
(200 GB/s)

1.6 Tbps
(200 GB/s)

pinned memory copy B/W 24.6 GB/s 26.1 GB/s 26.2 GB/s
pageable memory copy B/W 19.2 GB/s 12.2 GB/s 12.4 GB/s
P2P B/W 80.5 GB/s 277.6 GB/s 278.8 GB/s

Table 4. The GPU supercomputing systems evaluated in this study.

higher bandwidth than Polaris since both TG40 and TG80 have 12 NVLinks (300 GB/s link speed)
per GPU, whereas Polaris only has 4 NVLinks (100 GB/s link speed) per peer. These benchmark
results serve as the foundational insights for our subsequent evaluations.
Software Setup: We evaluate transformer model training on a state-of-the-art framework –

Megatron-DeepSpeed [3]. For all our evaluations, we use the fp16 precision training, PyTorch
implementation for data-parallelism, FlashAttention [11], and uniform activation recomputation. In
addition, each process handles one GPU with micro-batch size one, meaning that the global batch
size is the same as the total GPU count. On the other hand, Megatron-DeepSpeed incorporates NCCL
2.18 [5] for collective communication across the multi-node and multi-GPU environments. In addi-
tion to the process affinity mentioned earlier, we configure the NCCL_NET_GDR_LEVEL environment
variable to SYS to utilize a higher bandwidth in the system topology [5].

0
50
100
150
200
250

32
KB

64
KB

12
8K

B
25
6K

B
51
2K

B
1M

B
2M

B
4M

B
8M

B
16
M
B

32
M
B

64
M
B

12
8M

B
25
6M

B
51
2M

B
1G

B
2G

B
4G

B

Ba
nd

w
id

th
 (G

B/
s)

Message Size

1-Polaris 1-TG40 1-TG80 2-Polaris

2-TG40 2-TG80 4-Polaris

Fig. 8. The NCCL AllReduce bandwidth benchmark
with the half-precision data type, where the number in
each legend means the number of nodes for that GPU
system.

To have a better understanding of the com-
munication performance, we evaluated AllRe-
duce with a half-precision data type, which is
the most common collective communication
primitive and data type during training, on
nccl-tests [4] shown in Fig. 8. Within one
node, the AllReduce bandwidth is around 200
GB/s on all three systems, which is bounded by
the link speed of NVLink (300 GB/s), or specifi-
cally, the P2P bandwidth (277.6 GB/s) shown in
Table 4. But, as the evaluation scales to 2 nodes,
only TG40 and TG80 remain at high bandwidth,
while, in contrast, the Polaris AllReduce band-
width drops to around 20 GB/s. Similarly, the 4-
node Polaris bandwidth is also around 20 GB/s,
indicating that the bandwidth is bounded by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:11

Model 125M 1.3B 2.7B 6.7B 13B 18.4B

Layers (𝑙) 12 24 32 32 40 40
Hidden dim. (𝑑) 768 2064 2560 4096 5120 6144
Attention heads (𝑎) 12 24 32 32 40 48
Sequence length (𝑠) 1024 1024 1024 1024 1024 1024

Est. FLOPs (TFLOP) 0.6 8.2 16.5 41.2 79.9 114.4
Est. activation
memory (GB) 2.4 12.1 21.7 33.3 57.0 74.0

Table 5. Transformer model configurations.

0
80

160
240
320
400
480
560
640
720

125M 1.3B 2.7B 6.7B 13B 18.4B

Es
tim

at
ed

 m
em

or
y

(G
B) TG80

Polaris

TG40

b=4
b=2
b=1
Model

b=8

b=16

Fig. 9. Estimated memory usage for the model
weights and activation memory under different
batch sizes (𝑏).

the compute NICs link speed (25 GB/s). In contrast, TG40 and TG80 can still achieve around 180
GB/s interconnection bandwidth.
Model Setup: For the following evaluations, we will mainly focus on the GPT model, unless

otherwise specified. Due to the differences between causal trainings in BERT and GPTmodels, while
FlashAttention [11] claims that it can theoretically achieve a 2x speedup with causal training, the
end-to-end training time cannot attain this speedup since the FlashAttention kernel only contributes
to the computation. Furthermore, we did not observe significant differences in our profiling results.
We discuss the detailed similarities and differences in Sec 4.3. Table 5 lists six model configurations,
with model sizes ranging from 125M to 18.4B, which are chosen based on prior works [1] with some
adaption to align with the capabilities of Megatron-DeepSpeed framework. Further, the estimated
floating-point operations (FLOP) and activation memory are estimated according to Section 2.1,
assuming a micro-batch size of one. Fig. 9 illustrates the projected memory consumption based on
model size and activation memory with varying batch sizes. In general, we will use micro-batch
size one, and global batch size equals to the number of GPUs.

Evaluation Setup: The following execution times represent the average values over 100 training
iterations, and the standard deviation presents the evaluation variability. We denote OOM as out-
of-memory during training. The scalability plots are normalized against the first available result in
that group of experiments. For example, if a model encounters OOM on 8 GPUs but is able to train
on 16 GPUs, the scalability in that group of experiments is normalized against the 16 GPU result.

4 CHARACTERIZATION OF TRANSFORMER MODEL TRAINING
In this section, we evaluate and analyze compute in Section 4.1 and multi-GPU communication
efficiency in Section 4.2. Section 4.3 thoroughly evaluates data-parallel training and combines to
our prior analysis. Similarly, Section 4.4 evaluates model parallel training under three bandwidth-
limited cases. Finally, based on our characterization results, Section 4.5 summarizes our insights on
large transformer model training.

4.1 Computation
As discussed earlier in Section 3.1, we break down the compute time to further quantify the overhead
or, more precisely, the operator dispatch time. Fig. 10 shows the compute time distribution over
different model sizes on Polaris, where each compute time component corresponds to Fig. 7b.
Notably, for a smaller model size, the dispatch time dominates about 95% of the compute time.

As the model size increases, the proportion of compute kernel time also grows, and the intra-op
dispatch time spans from 78% down to 14%. Table 6 presents the time distribution of the most
time-consuming operators, which include GPU compute kernels and intra-op during the 18.4B
model training with ZeRO-3 enabled. This table indicates that the primary compute operators

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:12 Scott Cheng et al.

5% 25% 36% 77% 77% 83%

78% 63% 53% 19% 19% 14%

0%

20%

40%

60%

80%

100%

125M 1.3B 2.7B 6.7B 13B 18.4B

Ti
m

e
di

st
rib

ut
io

n

Kernel Intra-op dispatch time Inter-op dispatch time

Fig. 10. Dissection of compute time per iteration.

Operator Time (%)

kernel

GEMM 59.5%
CatArrayBatchedCopy 26.5%
Elementwise kernel 9.6%
Multihead attention 2.7%

intra-op

_post_forward_module_hook 28.1%
PreBackwardFunction 26.8%
PostBackwardFunction 24.3%
reshape 6.4%
permute 4.1%

Table 6. Time distribution for individual com-
pute kernel and intra-op.

are GEMM (General Matrix Multiplication) and tensor concatenation, as the transformer model
employs linear layers and merges tensors from multiple GPUs. It also highlights that the intra-op
dispatch time involves model parameter sharding and data layout transformation, such as reshaping,
permuting, and transposing, while the inter-op dispatch time typically consists of pthread switching
or network polling. Based on the compute time profiling and the transformer model FLOPs listed
in Table 1, we can estimate the compute time for the transformer model by:

𝑡compute-transformer =
Model FLOPs

FLOPS
=
𝑏 (72𝑠𝑑2 + 12𝑠2𝑑)𝑙

FLOPS
, (5)

where FLOPS represents the GPU floating point operations per second. Overall, to account for
compute dispatch time, we factor in the kernel time distribution within compute time (𝑘1) and the
transformer kernel time distribution within the kernel time (𝑘2):

𝑡compute =
𝑡compute-transformer

𝑘1 × 𝑘2
. (6)

For instance, for the 18.4B model, 𝑘1 ≈ 83% from Fig. 10 and 𝑘2 ≈ 1 − 26.5% from Table 6. Although
dispatch time does consume a significant portion of the time, especially in smaller models, certain
dispatch times, such as synchronization, are inevitable. Therefore, we refer to it as "dispatch time"
rather than "overhead".

4.2 Communication
In this section, we delve into how the achievable hardware communication bandwidth, previously
discussed in Section 3.3, factors into the collective communications scaling from 8 to 512 GPUs.
When the model size grows, the corresponding communication volume increases, and thus, it
becomes crucial to understand the scalability of different communication operations across multiple
nodes. As discussed earlier, a model with P parameters trained using the ZeRO-1 sharding strategy
will result in 4P bytes of communication volume per GPU due to the AllReduce operation on the
gradients and the AllGather operation on the model weights. Similarly, when using ZeRO-2 and
ZeRO-3, the communication volume per GPU depends only on the model size, and is independent
of the number of nodes.

Fig. 11 shows the average efficiency of the representative collective communication calls for each
ZeRO stage on Polaris and TG40 across different number of GPUs, with the ideal efficiency being
100%. Due to the OOM issue, the figure only includes four model sizes, but the omitted results
of larger models still exhibit similar scaling behavior. In addition, the scaling experiments on the
TG40 system are limited to 64 GPUs, as discussed in Section 3.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:13

0%
20%
40%
60%
80%
100%

1

10

100

1000

10000
8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B

Ef
fic

ie
nc

y

Ti
m

e
(m

s)

Polaris AllReduce Polaris AllGather TG40 AllReduce TG40 AllGather Polaris eff. TG40 eff. Ideal eff.

(a) AllReduce and AllGather operations in ZeRO-1.

0%
20%
40%
60%
80%
100%

1
10

100
1000

10000
100000

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B

Ef
fic

ie
nc

y

Ti
m

e
(m

s)

Polaris Reduce TG40 Reduce Polaris Efficiency TG40 Efficiency Ideal Efficiency

(b) Reduce operation in ZeRO-2.

0%
20%
40%
60%
80%
100%

1

10

100

1000

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B

Ef
fic

ie
nc

y

Ti
m

e
(m

s)

Polaris F/AllGather Polaris B/AllGather Polaris B/ReduceScatter
TG40 F/AllGather TG40 B/AllGather TG40 B/ReduceScatter
Polaris efficiency TG40 efficiency Ideal efficiency

(c) AllGather and ReduceScatter operations in ZeRO-3.

Fig. 11. Efficiency and log scale per GPU execution time of communication for a different number of GPUs,
model parameters, and each ZeRO stage on Polaris and TG40.

Fig. 11a presents the efficiency and execution time of AllReduce and AllGather operations in
ZeRO-1. The evaluation results align with the estimation derived from the prior discussion in
Sections 2.1 and 2.3. Specifically, the AllReduce time can be estimated as follows:

𝑡
(𝑝)
AllReduce = 4P / (𝐵𝑊 (8)eff8→𝑝) ≈ 4 × 12𝑑2𝑙 / (𝐵𝑊 (8)eff8→𝑝), (7)

where 𝑡 (𝑝)AllReduce represents the AllReduce communication time for a P-parameter fp16 model, 𝐵𝑊 (8)

denotes the achievable bandwidth on a system with 8-GPUs as discussed in Section 3.3, and eff8→𝑝

denotes the multi-GPU scaling efficiency from 8 to 𝑝 GPUs discussed in the prior section.
Similarly, we can deduce the estimated communication time for AllGather, which is half of the

AllReduce time. The results shown in the figure regarding the AllGather and AllReduce communi-
cation times align with our estimations. Additionally, for the same model size, the communication
time on TG40 is an order of magnitude lower than on Polaris since the network bandwidth is
8 times higher than that on Polaris, as shown in Table 4. It is to be noted however that, when

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:14 Scott Cheng et al.

1
2
4
8
16
32
64

0%
20%
40%
60%
80%
100%

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

OOM OOM

O
O

M

(a) Polaris.

1

2

4

8

0%
20%
40%
60%
80%

100%

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

OOM OOMOOM

(b) TG40.

Fig. 12. End-to-end per-iteration training time distribution and speedup for different number of GPUs, model
parameters using ZeRO-1 stage.

comparing the communication efficiency of both Polaris and TG40, they exhibit a similar trend,
and intuitively, as the number of GPUs increases, the efficiency drops to around 89.4% on average.

Fig. 11b shows the average Reduce time per ZeRO-2 training iteration. The AllGather operation is
omitted since it has the same behavior as in ZeRO-1. In ZeRO-2, ReduceScatter is performed during
the backward passes instead of AllReduce, and ReduceScatter is decomposed into multiple Reduce
operations as discussed previously in Section 2.2. Similar to ZeRO-1, the communication volume
of the Reduce operation is 2P bytes. However, in contrast to AllReduce, the Reduce operation
involves multiple GPU peer-to-peer operations [47]. Consequently, the communication time for
Reduce increases as the number of nodes increases, resulting in a drastic efficiency drop.
Moreover, though the communication time on TG40 is significantly lower than on Polaris,

both machines share a similar scaling trend in efficiency. Fig. 11c indicates that as the number
of nodes increases, the communication efficiency of AllGather drops to around 80% in ZeRO-3.
Furthermore, since the communication volumes of AllGather in both forward and backward passes
and ReduceScatter in backward passes are the same, both being 2P bytes, the communication time
is also similar.
It is worth noting that several factors can influence the observed throughput and efficiency.

For instance, our submitted job might be scheduled to scatter across multiple racks, and it might
collocate with other jobs in the same rack. Therefore, considering that the network infrastructure
is a shared resource among supercomputing systems, multiple Infiniband switching QoS may
generate overheads and lead to an efficiency drop. Furthermore, non-deterministic decisions in
communication, specifically the routing path between two GPUs, might lead to fluctuations in our
measurements. Overall, the inefficiency in communication will impede the end-to-end training,
and we will discuss this further in the next section.

4.3 Data Parallelism
In this section, we discuss how communication efficiency contributes to overall training throughput
during data parallelism training. Fig. 12 illustrates the scaling trends of the ZeRO-1 stage with

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:15

1
2
4
8
16
32
64

0%
20%
40%
60%
80%
100%

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

OOM OOM

(a) Polaris.

1

2

4

8

0%
20%
40%
60%
80%

100%

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

OOM OOM

(b) TG40.

Fig. 13. End-to-end per-iteration training time distribution and speedup for different number of GPUs, model
parameters using ZeRO-2 stage.

1
2
4
8
16
32
64

0%
20%
40%
60%
80%
100%

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

O
O

M

O
O

M

(a) Polaris.

1

2

4

8

0%
20%
40%
60%
80%

100%

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

125M 1.3B 2.7B 6.7B 13B 18.4B

Sp
ee

du
p

Ti
m

e
di

st
rib

ut
io

n

Compute AllReduce AllGather Reduce ReduceScatter Speedup Ideal speedup

O
O

M

O
O

M

(b) TG40.

Fig. 14. End-to-end per-iteration training time distribution and speedup for different number of GPUs, model
parameters using ZeRO-3 stage.

different numbers of GPUs and model parameters on Polaris and TG40 systems. As shown in
Fig. 12a, the distribution of compute and communication remains at a fixed ratio under the same
model size as the number of GPUs increases, since the per-GPU computations and communication
volume remain constant as we keep the micro-batch size equal to 1. Based on the communication
efficiency shown in Fig. 11a, the AllReduce and AllGather communications exhibit near-linear
scalability, with efficiency dropping slightly to 89% when scaling to 512 GPUs. As a result, taking

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:16 Scott Cheng et al.

125M 1.3B 2.7B

GPT C AR AG Total±Std TFLOPS C AR AG Total±Std TFLOPS C AR AG Total±Std TFLOPS

Polaris 49.0 22.0 11.1 82.1±5.6 11.0 118.0 168.9 124.2 411.1±8.0 15.5 246.7 503.0 256.0 1005.7±7.5 16.4
TG40 63.6 3.0 1.6 68.2±3.8 13.3 135.3 26.0 13.0 174.3±9.5 44.3 191.3 53.0 26.5 270.8±7.2 57.8
TG80 63.1 2.4 1.2 66.7±3.6 13.6 135.3 23.3 12.6 171.2±6.5 45.8 191.3 40.3 21.9 253.5±5.9 60.3

BERT C AR AG Total±Std TFLOPS C AR AG Total±Std TFLOPS C AR AG Total±Std TFLOPS

Polaris 56.3 21.1 8.9 86.4±4.4 10.1 118.0 165.5 93.5 377.0±8.8 14.1 246.7 493.1 248.1 988.0±7.8 18.9
TG40 63.6 2.4 1.2 67.2±2.9 13.0 135.3 26.0 13.0 174.3±8.7 37.9 211.3 39.9 21.6 272.8±5.9 61.3
TG80 63.1 2.4 1.2 66.7±3.9 12.7 135.3 22.9 12.4 170.6±5.5 39.2 199.5 39.8 21.5 260.9±6.3 64.4

Table 7. Breakdown of GPT and BERT model training times (ms) per iteration in the ZeRO-1 stage, along
with the corresponding achieved FLOPS per GPU, across various model parameters in Polaris, TG40, and
TG80. The abbreviations are as follows: C: Compute, AR: AllReduce, AG: AllGather.

into account the communication time distribution during the training iteration, ZeRO-1 can achieve
a near-ideal speedup in the evaluation. A similar observation can be made for TG40, as shown
in Fig. 12b, where ZeRO-1 also exhibits almost perfect linear scaling – in both computation and
communication – on TG40, resulting in an overall optimal speedup.
Regarding the scaling of model size, when the model size is relatively small (e.g., 125M), the

communication time accounts for approximately 41.4% of the training time on Polaris with lower
bandwidth; in contrast, it only takes 6.7% on TG40 in a high bandwidth environment. However, as
the model size increases, communication gradually dominates the overall time. For instance, as
illustrated in Fig. 12, when the model size becomes 6.7B, the communication time takes up to 85.4%
of the training time on Polaris and 69.0% on TG40, which indicates that a higher bandwidth brings
an advantage over a lower one, particularly when the model size is larger.

Further, the ZeRO-2 evaluation results are depicted in Fig. 13a. In contrast to ZeRO-1, the Reduce
communication does not scale well across multiple GPUs on Polaris, as discussed in Section 4.2.
Consequently, this increases the communication ratio by 5-10% in a training iteration, and reduces
the overall training scalability. In comparison, Fig. 13b exhibits overall better scaling on TG40,
despite the Reduce operation efficiency being the same. Moreover, the Reduce communication time
for TG40 is, on average, 7.16 times shorter than Polaris, due to an 8 times higher interconnection
link bandwidth. As a result, the communication contributes less to the overall training, and thus,
the TG40 iteration time is 62.29% faster than Polaris, on average.
Moreover, the ZeRO-3 evaluation results, depicted in Fig.14a, reveal that ReduceScatter and

AllGather also scale almost linearly, leading to a near-linear training scalability. In comparison,
Fig. 14b plots the evaluation results on TG40. The communication time distribution is significantly
reduced compared to Polaris. Overall, a high system bandwidth provides a tangible edge in com-
munication scaling. However, achieving near-linear speedup is still possible regardless of whether
the bandwidth is low or high.

Among all the ZeRO stages, as the model parameters increase, the communication volume also
increases, leading to a higher communication distribution during a training iteration. Consequently,
this reduces the non-overlapping computation time and makes the overall training throughput
further bottlenecked by the network bandwidth. Regarding the comparisons between different
ZeRO stages, if we increase the ZeRO stages while keeping the same number of GPUs and the
same model size, more data will be sharded across multiple GPUs. Therefore, with a higher ZeRO
stage, the system is able to accommodate a larger model, such as the 13B and 18.4B models, without
encountering any OOM issues.
On the other hand, Table 7 shows the breakdown of per-iteration training time on all three

systems, each equipped with 8 GPUs and utilizing ZeRO-1 optimization for the GPT and BERT

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:17

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Es
tim

at
ed

 S
pe

ed
up

Evaluated Speedup

MSE = 2.0%

(a) Polaris.

1

2

4

8

1 2 4 8

Es
tim

at
ed

 S
pe

ed
up

Evaluated Speedup

MSE = 7.7%

(b) TG40.

Fig. 15. Estimated speedup compared to evaluated speedup.

models. In general, the GPT and BERT models yield similar training times since the only difference
between the two models is whether the multi-head attention is masked, as discussed in Section 2.1.
Under the same model size, the compute time is similar across all three systems since the compute
amount is the same. Furthermore, the AllReduce time is approximately twice that of the AllGather
time, as previously mentioned in Section 2.4. Moreover, TG40 and TG80 provide similar speedups
when compared to Polaris, due to the same high network bandwidth.

To assess the accuracy of our speedup analysis, we report the mean squared error (MSE) between
the evaluated speedup and our predictions based on Equation (4). The evaluations are presented in
Fig. 15. Our analysis, which takes into account both compute and communication, not only aligns
with the evaluations in the same order of magnitude but also achieves precise per-iteration time
estimation. It also indicates the effectiveness of our analytical model and our ability to accurately
estimate training throughput after system scaling for various model configurations. Based on our
evaluations, we emphasize the difference in communication time ratio between a lower bandwidth
system (Polaris) and a high-bandwidth DGX machine (TG40), which leads to a different training
landscape. The average time per training iteration on Polaris is 2.45 times longer than that on TG40,
as the average communication time on TG40 is 7.35 times faster than that on Polaris. The average
communication time distribution of a training iteration on TG40 is 26.70%, whereas it is 69.02% on
Polaris, indicating a 42.32% increase in the communication time distribution.

4.4 Model Parallelism
In this section, we discuss the synergy between model parallelism and data parallelism. Fig. 16
and Fig. 17 show the ZeRO-1 stage evaluation with different model parallelism configurations on
an 8-node Polaris system. The global and micro-batch sizes are fixed at 256 and 8, respectively.
Additionally, we disable one or two (all) InfiniBand NICs to investigate the impact of limited
bandwidth, resulting in three network bandwidth conditions: P2 with 25 GB/s, P1 with 12.5 GB/s,
and P0 with around 5 GB/s. In the case of all InfiniBand NICs being disabled (P0), the communication
will only utilize the plain TCP transport without any RDMA support.

Fig. 16 shows that, when we keep the degree of tensor parallelism as 1, as the degree of pipeline
parallelism increases, the degree of data parallelism decreases, and the total communication time
first reduces but then increases. This is because, the time taken by the AllGather operation used in
data parallelism reduces, and the SendRecv time increases due to the increase in pipeline stages.
Furthermore, if the degree of pipeline parallelism is 16, each node needs to process 2 pipeline stages

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:18 Scott Cheng et al.

since there are only 8 nodes in total. As a result, if the degree of pipeline parallelism is greater or
equal to the number of nodes (in this case, it is 8), data parallelism can be done within one node
and can thus take advantage of higher intra-node bandwidth, thereby significantly reducing the
AllGather time (by 6 times).

0

500

1,000

1,500

2,000

2,500

3,000

3,500

(1, 32) (2, 16) (4, 8) (8, 4) (16, 2) (32, 1)

Ti
m

e
(m

s)

Compute AllReduce AllGather SendRecv

Fig. 16. (#PP, #DP) on 8-node Polaris. In each
group, the training times per iteration are ordered
as P2, P1, and P0.

Similar observations can be made in bandwidth-
limited environments as well. As shown in Fig. 16,
the training time with the P0 setting drastically re-
duces when the degree of pipeline parallelism in-
creases from 4 to 8. The reason for this is that, an
inter-node AllGather needs to be performed when
the degree of data parallelism is 8, whereas it be-
comes intra-node communication with higher band-
width when the degree of data parallelism is 4. On
the contrary, if the degree of pipeline parallelism
exceeds the number of nodes, each node needs to
process more than one pipeline stage, resulting in
an increase of pipeline stages and bubbles that re-
duce training throughput. This highlights the significance of selecting an appropriate degree of
parallelism. For instance, an optimal pipeline parallelism plan with a degree of 4 in P1, which
corresponds to the bandwidth-limited case, yields approximately the same per-iteration training
time as the non-optimal pipeline parallelism of 8 in the full-bandwidth P0 case.

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000

(1, 32) (2, 16) (4, 8) (8, 4) (16, 2) (32, 1)

Ti
m

e
(m

s)

Compute AllReduce AllGather

(a) (#TP, #DP).

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000

(1, 32) (2, 16) (4, 8) (8, 4) (16, 2) (32, 1)

Ti
m

e
(m

s)

Compute AllReduce AllGather SendRecv

(b) (#TP, #PP).

Fig. 17. Model parallelism on 8-node Polaris under three network bandwidths with two (P2: 25 GB/s), one
(P1: 12.5 GB/s), or none (P0: 5 GB/s) Infiniband enabled. In each group, the training times per iteration are
ordered as P2, P1, and P0.

On the other hand, Fig. 17a shows that, as we increase the degree of tensor parallelism, the
communication time increases, especially from 4 to 8. Since the activation memory will first be
partitioned within a node in the tensor parallelism scheme, once the degree of tensor parallelism
exceeds the number of GPUs per node (e.g., 4), the communication time will increase rapidly, given
that the inter-node Infiniband bandwidth is much lower than the intra-node NVLink bandwidth.
Comparing the results with the full-bandwidth settings P2, this issue becomes much more severe
with the P0 and P1 settings. The communication time increases more drastically when the degree
of tensor parallelism exceeds 4.

Additionally, the results shown in Fig. 17b align with Fig. 17a and Fig. 16. It indicates that when
the degree of tensor and pipeline parallelism is set to 4 and 8, respectively, we can achieve the
best speedup. A better speedup can also be achieved when the degree of tensor parallelism is
smaller than the number of GPUs per node. In general, to achieve the best training throughput, we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:19

would recommend setting the degree of tensor parallelism to match the number of GPUs per node
and keeping the degree of pipeline parallelism smaller than the number of nodes, especially in a
bandwidth-limited environment.

4.5 Discussion
In this section, we discuss our overall insights based on prior analysis and evaluations.

4.5.1 The advantages of bottom-up breakdown and analysis. In large-scale training systems, it is
important to understand how the efficiency of each component changes as the system scales. This
allows us to identify potential bottlenecks and develop scaling and parallelization strategies to
achieve the best training throughput. The bottom-up time breakdown proposed in this work offers
several advantages – (1) it provides information on inter-op and intra-op dispatch times, which
are unavoidable and can consume up to 95% of the compute time in smaller model training. Prior
works, which do not emphasize these overheads and primarily focus on FLOPS calculation, would
likely fail to predict and match the scaling of smaller model training on large-scale systems; (2)
while the FLOPS metric can provide information on overall hardware utilization, it is insufficient
for analyzing the hybrid parallelism characteristics. It is challenging to understand the contribution
of each parallel strategy to training throughput using FLOPS as a metric. The bottom-up time
breakdown makes it clearer and easier to determine the impact of each parallelism strategy on each
component of training time; and (3) when upgrading existing systems or designing new hardware
for computation or communication, our bottom-up profiling offers a general method to analyze the
scaling effect and accurately predict training throughput. In summary, a bottom-up breakdown
and analysis could help users better understand the characteristics of their system and workload.

4.5.2 Network efficiency and overall throughput. In our evaluations, network efficiency would
significantly affect the scaling of the system as well as the final training throughput. On the other
hand, once we have information about network efficiency, we can estimate how well the scaling
could be. Therefore, for future scaling analyses on large-scale systems, it is recommended to
first obtain a breakdown of single-node communication and compute times, along with network
efficiency through benchmarking. With this information, we can estimate end-to-end training times
after system scaling. Moreover, this approach also applies to the scaling of transformermodels, as the
number of parameters, computation, and memory consumption have been thoroughly investigated.
In a bandwidth-limited environment, network efficiency remains a critical indicator for multi-node
scaling, and low-precision compression can help reduce the volume of communication. Furthermore,
we canmodel network bandwidth from the perspective of network efficiency in cases where network
is a shared resource among multiple tenants, such as in supercomputing systems or HPC in cloud
services, or in a network with different transport options, such as Infiniband or Gigabit Ethernet.
This suggests that network efficiency is a general and effective indicator that should always be
considered when scaling a system.

4.5.3 Data and model parallelism strategies. In large transformer model training, data parallelism
can achieve better scaling compared to tensor parallelism. This is because data parallelism reduces
the gradient of weights, while tensor parallelism reduces the gradient of activations, which are
typically much larger than the weights. To further reduce the communication volume, a lower
ZeRO stage with less data sharding is preferred if the model is able to fit into the GPU memory.

For model parallelism, we conclude that the degree of pipeline parallelism should be larger than
the number of nodes, while the degree of tensor parallelism should not exceed the number of GPUs
per node. To further improve GPU utilization, we can choose the maximum micro-batch size that
can fit into a single GPU memory, and the corresponding global batch size can be determined.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:20 Scott Cheng et al.

Moreover, in a bandwidth-limited environment, the best parallelism strategy is that the degree of
pipeline parallelism equals to the number of nodes, and the degree of tensor parallelism equals
to the number of GPUs per node, as the inter-node bandwidth is much lower than the intra-node
bandwidth, and it will cause a dramatic increase in communication time.Wewould like to emphasize
that such insights can only be gained through our bottom-up breakdown analysis.
Specifically, in pipeline parallelism, the per iteration time consists of communication time and

pipeline bubbles. In particular, the communication time depends on the bandwidth, while the
pipeline bubbles typically do not, as each pipeline stage is usually assumed to complete simultane-
ously. As a result, under the same degree of pipeline parallelism, if we continue to increase the
inter-node bandwidth, the bubble time cannot be eliminated, even though the communication time
could be reduced. Consequently, the total time is dominated by the bubble time as the bandwidth
increases, and thus data parallelism becomes a better option – compared to pipeline parallelism –
for scaling. In general, we can determine this boundary by calculating the communication cost of
data parallelism compared to the overhead caused by the bubble in pipeline parallelism.

4.5.4 Guidelines for the future design and optimization of large-scale systems. Based on our analysis
and evaluations, we provide the following guidelines for the future design and optimization of large-
scale systems – (1) while hardware is continuously advancing to deliver increased computing power,
it is crucial for people to also focus on network bandwidth in the context of large-scale systems. In
the case of Large Language Models (LLMs) that heavily depend on parallelization across hundreds
or thousands of nodes, inter-node bandwidth becomes a decisive factor in network efficiency and
consequently has a significant impact on the final training throughput; (2) the interconnection link
speed can vary by up to eight times across high-performance computing systems that have a similar
order of FLOPS. To enhance the scalability of LLM training within existing systems, upgrading
the interconnection speed should be the primary consideration; and (3) there are multiple ways
to improve training throughput. Since the inter-op and intra-op dispatch times can introduce
overheads, one approach is to optimize computation by either reducing operator dispatch time or
dispatching PyTorch operators in parallel to conceal the dispatch time. Another strategy would be
optimizing communication using in-network computing, such as smart NICs or NVIDIA SHARP
switches [7]. Finally, achieving better overlap between computation and communication can also
enhance throughput.

5 RELATEDWORKS
In this section, we discuss related works in characterization and optimization of transformer model:

Characterizing Transformer Models. Several works proposed model parallelism optimization
and analysis. [39] proposed tensor parallelism in transformer training and studied weak scaling
within one node. In comparison, we study tensor parallelism across nodes, and based on our detailed
communication breakdowns, we analyze the synergy of data and tensor parallelism. Further, [27]
integrated pipeline parallelism to transformer model training and provided detailed analysis on
pipeline bubbles. They also provided an end-to-end training throughput estimation based on FLOPS.
However, their results were evaluated on high-bandwidth DGX servers, and thus, the estimation
may not serve as a practical metric for a lower-bandwidth system. For instance, our evaluation
showed that the communication time could be seven times longer, and the overall FLOPS could be
reduced by 80%, thus deviating from the estimation using FLOPS. In general, our model parallelism
characterization on high bandwidth settings aligns with their viewpoint, but we further break
down the reasoning into the contribution from data and model parallelism. On the other hand, [23]
focus on characterizing activation computation and still adopt FLOPS as a metric, and discussion
and evaluation are made on high-bandwidth DGX servers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:21

Several works focus on communication optimization and analysis during transformer model
training. [34] analyzed theminimummemory or disk bandwidth requirements tomeet the arithmetic
intensity for a given transformer model. In general, our analysis can further integrate with theirs to
incorporate memory bandwidth. [17] reduced data movement during transformer model training
by identifying operator dependency in compute-dataflow. Additionally, they proposed a memory
efficiency metric, MUE, to quantify data movement performance instead of FLOPS.
On the other hand, parallelization and partitioning allow a larger transformer model to fit in

a limited GPU memory during training. [41] conducted a comprehensive pipeline parallelism
comparison and proposes a general automating graph partitioning, and [47] partitioned matrix
multiplication in transformer layers to accommodate a larger size of activationmemory and employs
𝛼-𝛽 network modeling for collective communication calls similar to the analysis in nccl-tests [4].
[31], on the other hand, focused on characterizing the GEMM operators in BERTmodels. In addition,
multiple works [15, 20, 24, 32] provided guidelines on designing transformer model architecture
and the data efficiency during training. However, most prior works focus primarily on analyzing
FLOPS, which may not be representative of the end-to-end training time in a bandwidth-limited
system. Therefore, the scaling law need to be adjusted to include bandwidth, and the resulting
model scaling can be a shift from the existing compute-optimal scaling. We believe that taking into
account both the computation and communication costs can make the scaling law more practical.

Transformer Model Training Optimization. The ZeRO optimization was first proposed and
implemented in DeepSpeed [33, 36]. It was further integrated into PyTorch FSDP [49]. Subsequent
DeepSpeed optimizations focused on memory offloading to CPUs or NVMe disks [34, 37]. Moreover,
extensive research has been conducted on quantization for both training and inference to reduce
memory consumption in previous works [44, 46, 48]. These prior works primarily concentrated on
memory reduction and offloading for large models and were evaluated on high-end DGX servers.
On the other hand, Megatron-LM [23, 27, 39] integrated 3D parallelism, including data, tensor,

and pipeline parallelism implementations. Megatron-DeepSpeed [3] further integrated ZeRO opti-
mization with various model parallelism schemes within the Megatron-LM framework. Additionally,
efficient 3D parallelism implementations parallel to Megatron-DeepSpeed are provided in [40, 43].
Meanwhile, deep learning compilers offer a systematic way to optimize transformer model

computations. Many prior works [50, 51] on auto parallelism provided sharding schemes that
balance compute and communication cost, but they primarily do not involve other optimizations
such as ZeRO optimization. Additionally, several other works [2, 10, 18] concentrated on enhancing
the performance of the NCCL communication library in terms of pipeline efficiency through
compiler techniques.

6 CONCLUSION
This paper presents a thorough characterization and analysis of large transformer model training
at scale. Our evaluation reveals that communication, on average, consumes 80% of the time during
training on Polaris, and a lower bandwidth system deteriorates the communication time up to 22%
compared to DGX systems. Furthermore, our bottom-up analysis, considering model configurations,
network bandwidth, multi-core scaling and compute overheads, yields precise end-to-end training
time estimations of MSE 2.0% across diverse model sizes and system architectures. While data
parallelism is currently the prevalent strategy for large-scale transformer model training, we delve
into the synergy between data parallelism and model parallelism by delineating the distinct roles
of various communication calls, leading to training scaling under different network bandwidths.
Driven by the ever-growing size of large transformer models, the future supercomputing landscape
continues to evolve, and, more importantly, our study serves as a clarion call to characterize the
often overlooked, yet pivotal role of network bandwidth during large-scale training. Through our

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

8:22 Scott Cheng et al.

thorough characterization and analysis, the interplay between compute and communication during
large-scale training is positioned to be foundational in driving efficient, scalable and performant
system design, in an era revolutionized by ever-increasing model complexities.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous SIGMETRICS reviewers for their insightful
comments and suggestions. This research was funded in part by and used resources at the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357. This work is also supported in part by NSF grants #2008398,
#1931531, and #2122155. Lastly, wewould like to thankMeng-Yu Tsai for the intellectual discussions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:23

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, JeffreyWu, ClemensWinter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901.

[2] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi.
2021. Synthesizing optimal collective algorithms. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 62–75.

[3] Microsoft Corporation. 2022. Megatron-DeepSpeed. "https://github.com/microsoft/Megatron-DeepSpeed".
[4] Nvidia Corporation. 2016. NCCL Tests. "https://github.com/NVIDIA/nccl-tests".
[5] Nvidia Corporation. 2016. NVIDIA Collective Communications Library (NCCL). "https://github.com/NVIDIA/nccl".
[6] Nvidia Corporation. 2016. NVIDIA Nsight Systems. "https://developer.nvidia.com/nsight-systems".
[7] Nvidia Corporation. 2016. NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP). "https:

//docs.nvidia.com/networking/display/sharpv300".
[8] Nvidia Corporation. 2016. NVIDIA Tools Extension Library (NVTX). "https://github.com/NVIDIA/NVTX".
[9] Nvidia Corporation. 2023. CUDA Samples. "https://github.com/NVIDIA/cuda-samples".
[10] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan Xiong. 2022. Gc3: An optimizing compiler

for gpu collective communication. arXiv preprint arXiv:2201.11840 (2022).
[11] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashattention: Fast and memory-efficient

exact attention with io-awareness. Advances in Neural Information Processing Systems 35 (2022), 16344–16359.
[12] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. 2023. Gpts are gpts: An early look at the labor

market impact potential of large language models. arXiv preprint arXiv:2303.10130 (2023).
[13] GitHub. 2023. Copilot. "https://github.com/features/copilot".
[14] Hannibal046. 2023. Awesome-LLM. "https://github.com/Hannibal046/Awesome-LLM".
[15] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de

Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. 2022. An empirical analysis of compute-optimal
large language model training. Advances in Neural Information Processing Systems 35 (2022), 30016–30030.

[16] Mikhail Isaev, Nic McDonald, and Richard Vuduc. 2023. Scaling Infrastructure to Support Multi-Trillion Parameter
LLM Training. In Architecture and System Support for Transformer Models (ASSYST@ ISCA 2023).

[17] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. 2021. Data movement is all you need: A
case study on optimizing transformers. Proceedings of Machine Learning and Systems 3 (2021), 711–732.

[18] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan Miao, Madanlal
Musuvathi, Todd Mytkowicz, and Olli Saarikivi. 2022. Breaking the computation and communication abstraction
barrier in distributed machine learning workloads. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 402–416.

[19] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvu-
nakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. 2021. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 7873 (2021), 583–589.

[20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford,
Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[21] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, Vol. 1. 2.

[22] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[23] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad Shoeybi,
and Bryan Catanzaro. 2023. Reducing activation recomputation in large transformer models. Proceedings of Machine
Learning and Systems 5 (2023).

[24] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak
Narayanan, Yuhuai Wu, Ananya Kumar, et al. 2022. Holistic evaluation of language models. arXiv preprint
arXiv:2211.09110 (2022).

[25] Meta. 2022. PyTorch Profiler. "https://pytorch.org/docs/stable/profiler.html".
[26] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. 2001. Top500 supercomputer sites. "https://www.

top500.org/".
[27] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri

Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/sharpv300
https://github.com/NVIDIA/NVTX
https://github.com/NVIDIA/cuda-samples
https://github.com/features/copilot
https://github.com/Hannibal046/Awesome-LLM
https://pytorch.org/docs/stable/profiler.html
https://www.top500.org/
https://www.top500.org/

8:24 Scott Cheng et al.

training on gpu clusters using megatron-lm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–15.

[28] OpenAI. 2023. ChatGPT. "https://chat.openai.com".
[29] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc.,
8024–8035.

[31] Suchita Pati, Shaizeen Aga, Nuwan Jayasena, and Matthew D Sinclair. 2021. Demystifying bert: Implications for
accelerator design. arXiv preprint arXiv:2104.08335 (2021).

[32] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah
Henderson, Roman Ring, Susannah Young, et al. 2021. Scaling language models: Methods, analysis & insights from
training gopher. arXiv preprint arXiv:2112.11446 (2021).

[33] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero: Memory optimizations toward training
trillion parameter models. In SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–16.

[34] SamyamRajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and YuxiongHe. 2021. Zero-infinity: Breaking the gpu
memory wall for extreme scale deep learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[35] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
2021. Zero-shot text-to-image generation. In International Conference on Machine Learning. PMLR, 8821–8831.

[36] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[37] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong
Li, and Yuxiong He. 2021. {ZeRO-Offload}: Democratizing {Billion-Scale} model training. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 551–564.

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10684–10695.

[39] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and BryanCatanzaro. 2019. Megatron-
lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[40] Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho Lee. 2023. Optimus-
CC: Efficient Large NLPModel Training with 3D ParallelismAware Communication Compression. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2. 560–573.

[41] Masahiro Tanaka, Kenjiro Taura, Toshihiro Hanawa, and Kentaro Torisawa. 2021. Automatic graph partitioning for
very large-scale deep learning. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 1004–1013.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

[43] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. 2022. Tesseract: Parallelize the tensor parallelism efficiently. In
Proceedings of the 51st International Conference on Parallel Processing. 1–11.

[44] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei
Yang, and Yuxiong He. 2023. ZeRO++: Extremely Efficient Collective Communication for Giant Model Training. arXiv
preprint arXiv:2306.10209 (2023).

[45] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, et al. 2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[46] Xiaoxia Wu, Zhewei Yao, and Yuxiong He. 2023. ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8
Quantization Using Floating-Point Formats. arXiv preprint arXiv:2307.09782 (2023).

[47] Qifan Xu and Yang You. 2023. An efficient 2d method for training super-large deep learning models. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 222–232.

[48] Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. 2023. ZeroQuant-V2: Exploring Post-training
Quantization in LLMs from Comprehensive Study to Low Rank Compensation. arXiv preprint arXiv:2303.08302

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

https://chat.openai.com
https://arxiv.org/abs/2303.08774

Thorough Characterization and Analysis of Large Transformer Model Training At-Scale 8:25

(2023).
[49] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,

Myle Ott, Sam Shleifer, et al. 2023. Pytorch FSDP: experiences on scaling fully sharded data parallel. arXiv preprint
arXiv:2304.11277 (2023).

[50] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong
Xu, Danyang Zhuo, Eric P Xing, et al. 2022. Alpa: Automating inter-and {Intra-Operator} parallelism for distributed
deep learning. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). 559–578.

[51] Yonghao Zhuang, Lianmin Zheng, Zhuohan Li, Eric Xing, Qirong Ho, Joseph Gonzalez, Ion Stoica, Hao Zhang, and
Hexu Zhao. 2023. On optimizing the communication of model parallelism. Proceedings of Machine Learning and
Systems 5 (2023).

[52] Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde,
Bharat Kale, Danilo Perez-Rivera, Heng Ma, et al. 2022. GenSLMs: Genome-scale language models reveal SARS-CoV-2
evolutionary dynamics. bioRxiv (2022), 2022–10.

Received October 2023; revised January 2024; accepted January 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 8. Publication date: March 2024.

	Abstract
	1 Introduction
	2 Background
	2.1 Transformer Model
	2.2 Transformer Model Sharding: ZeRO
	2.3 Data and Model Parallelism in Transformer Model
	2.4 Collective Communication

	3 Methodology
	3.1 Instrumentation
	3.2 Scalability Analysis
	3.3 Experimental Methodology

	4 Characterization of Transformer Model Training
	4.1 Computation
	4.2 Communication
	4.3 Data Parallelism
	4.4 Model Parallelism
	4.5 Discussion

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

